• Laser & Optoelectronics Progress
  • Vol. 61, Issue 7, 0706001 (2024)
Jian Wang1,2,*, Zhongyang Wang1,2, Jinfeng Liu1,2, and Shuo Wang1,2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 2Optics Valley Laboratory, Wuhan 430074, Hubei , China
  • show less
    DOI: 10.3788/LOP240754 Cite this Article Set citation alerts
    Jian Wang, Zhongyang Wang, Jinfeng Liu, Shuo Wang. Wireless Communication Technologies using Vortex Electromagnetic Waves (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706001 Copy Citation Text show less
    References

    [1] Chan V W S. Free-space optical communications[J]. Journal of Lightwave Technology, 24, 4750-4762(2006).

    [2] Hutt D L, Snell K J, Bélanger P A. Alexander graham Bell’s PHOTOPHONE[J]. Optics and Photonics News, 4, 20-25(1993).

    [3] Hecht J. Beam: the race to make the laser[J]. Optics and Photonics News, 16, 24-29(2005).

    [4] Gfeller F R, Bapst U. Wireless in-house data communication via diffuse infrared radiation[J]. Proceedings of the IEEE, 67, 1474-1486(1979).

    [5] Moreira A J C, Tavares A M R, Valadas R J M T et al. Modulation methods for wireless infrared transmission systems: performance under ambient light noise and interference[J]. Proceedings of SPIE, 2601, 226-237(1995).

    [6] Street A M, Stavrinou P N, O’Brien D C et al. Indoor optical wireless systems-a review[J]. Optical and Quantum Electronics, 29, 349-378(1997).

    [7] Tang A P, Kahn J M, Ho K P. Wireless infrared communication links using multi-beam transmitters and imaging receivers[C], 180-186(1996).

    [8] Carruther J B, Kahn J M. Angle diversity for nondirected wireless infrared communication[J]. IEEE Transactions on Communications, 48, 960-969(2000).

    [9] Ramirez-Iniguez R. Indoor optical wireless communications[C](1999).

    [10] Heatley D J T, Wisely D R, Neild I et al. Optical wireless: the story so far[J]. IEEE Communications Magazine, 36, 72-74(1998).

    [11] Fernandes J J G, Watson P A, Neves J C. Wireless LANs: physical properties of infra-red systems vs. mmw systems[J]. IEEE Communications Magazine, 32, 68-73(1994).

    [12] Ghassemlooy Z, Popoola W, Ait S, Adachi F. Terrestrial free-space optical communications[M]. Mobile and wireless communications network layer and circuit level design(2010).

    [13] Yura H T, McKinley W G. Optical scintillation statistics for IR ground-to-space laser communication systems[J]. Applied Optics, 22, 3353-3358(1983).

    [14] Sharma V, Kumar N. Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system[J]. Optics Communications, 286, 99-102(2013).

    [15] Fried D L. Scintillation of a ground-to-space laser illuminator[J]. Journal of the Optical Society of America, 57, 980-983(1967).

    [16] Minott P O. Scintillation in an earth-to-space propagation path[J]. Journal of the Optical Society of America, 62, 885-888(1972).

    [17] Titterton P J. Power reduction and fluctuations caused by narrow laser beam motion in the far field[J]. Applied Optics, 12, 423-425(1973).

    [18] Fried D L. Statistics of laser beam fade induced by pointing jitter[J]. Applied Optics, 12, 422-423(1973).

    [19] Bufton J L. Scintillation statistics measured in an earth-space-earth retroreflector link[J]. Applied Optics, 16, 2654-2660(1977).

    [20] Aruga T, Araki K, Igarashi T et al. Earth-to-space laser beam transmission for spacecraft attitude measurement[J]. Applied Optics, 23, 143-147(1984).

    [21] Aruga T, Araki K, Hayashi R et al. Earth-to-geosynchronous satellite laser beam transmission[J]. Applied Optics, 24, 53-56(1985).

    [22] Lightsey P A. Scintillation in ground-to-space and retroreflected laser beams[J]. Optical Engineering, 33, 2535(1994).

    [23] Wilson K E, Lesh J R. An overview of the galileo optical experiment (GOPEX)[EB/OL]. https://ntrs.nasa.gov/citations/19940009913

    [24] Wilson K E. An overview of the GOLD experiment between the ETS-VI satellite and the table mountain facility[J]. Telecommunications and Data Acquisition Progress Report, 124, 8-19(1995).

    [25] Wilson K E, Leatherman P R, Cleis R et al. Results of the compensated Earth-Moon-Earth retroreflector laser link (CEMERLL) experiment[EB/OL]. https://ntrs.nasa.gov/citations/20040191393

    [26] Tolker-nielsen T, Oppenhauser G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[J]. Proceedings of SPIE, 4635, 1-15(2002).

    [27] Fujiwara Y, Mokuno M, Jono T et al. Optical inter-orbit communications engineering test satellite (OICETS)[J]. Acta Astronautica, 61, 163-175(2007).

    [28] Toyoda M, Toyoshima M, Takahashi T et al. Ground-to-ETS-VI narrow laser beam transmission[J]. Proceedings of SPIE, 2699, 71-80(1996).

    [29] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [30] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).

    [31] Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 62, 34201(2018).

    [32] Wang J, Liu J, Li S H et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 11, 645-680(2022).

    [33] Yan Y, Xie G D, Lavery M P J et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 4876(2014).

    [34] Su H, Shen X P, Su G X et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle[J]. Laser & Photonics Reviews, 12, 1800010(2018).

    [35] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [36] Ren Y X, Li L, Xie G D et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing[J]. IEEE Transactions on Wireless Communications, 16, 3151-3161(2017).

    [37] Lin M T, Gao Y, Liu P G et al. Theoretical analyses and design of circular array to generate orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 65, 3510-3519(2017).

    [38] Yu S X, Li L, Shi G M et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 108, 121903(2016).

    [39] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser[J]. Optics Express, 21, 12401-12409(2013).

    [40] Lee A J, Zhang C Y, Omatsu T et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 22, 5400-5409(2014).

    [41] Liu J, Wang J. Research progress of vortex laser[J]. Chinese Journal of Lasers, 49, 1201001(2022).

    [42] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [43] Beijersbergen M W, Coerwinkel R P C, Kristensen M et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 112, 321-327(1994).

    [44] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [45] Karimi E, Schulz S A, De Leon I et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014).

    [46] Krishna Inavalli V V G, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber[J]. Optics Communications, 283, 861-864(2010).

    [47] Lin J, Yuan X C, Tao S H et al. Synthesis of multiple collinear helical modes generated by a phase-only element[J]. Journal of the Optical Society of America A, 23, 1214-1218(2006).

    [48] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [49] Su T H, Scott R P, Djordjevic S S et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 20, 9396-9402(2012).

    [50] Zhao Z, Wang J, Li S H et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Optics Letters, 38, 932-934(2013).

    [51] Zhao Y F, Du J, Zhang J R et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm[J]. Applied Physics Letters, 112, 171103(2018).

    [52] Wang J. High-dimensional orbital angular momentum comb[J]. Advanced Photonics, 4, 050501(2022).

    [53] Turnbull G A, Robertson D A, Smith G M et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 127, 183-188(1996).

    [54] Thidé B, Then H, Sjöholm J et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 99, 087701(2007).

    [55] Tamburini F, Mari E, Thidé B et al. Experimental verification of photon angular momentum and vorticity with radio techniques[J]. Applied Physics Letters, 99, 204102(2011).

    [56] Mahmouli F E, Walker S D. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel[J]. IEEE Wireless Communications Letters, 2, 223-226(2013).

    [57] Wei X L, Liu C M, Niu L T et al. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range[J]. Applied Optics, 54, 10641-10649(2015).

    [58] Yu S X, Li L, Shi G M et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 108, 241901(2016).

    [59] Chen Y L, Zheng S L, Li Y et al. A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 15, 1156-1158(2015).

    [60] Cheng W C, Zhang H L, Liang L P et al. Orbital-angular-momentum embedded massive MIMO: achieving multiplicative spectrum-efficiency for mmWave communications[J]. IEEE Access, 6, 2732-2745(2017).

    [61] Zhang W H, Qi Q Q, Zhou J et al. Mimicking faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).

    [62] Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 3, 1278(2012).

    [63] Belmonte A, Torres J P. Digital coherent receiver for orbital angular momentum demultiplexing[J]. Optics Letters, 38, 241-243(2013).

    [64] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [65] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).

    [66] Malik M, Mirhosseini M, Lavery M P J et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 3115(2014).

    [67] Tamburini F, Mari E, Sponselli A et al. Encoding many channels on the same frequency through radio vorticity: first experimental test[J]. New Journal of Physics, 14, 033001(2012).

    [68] Hui X N, Zheng S L, Chen Y L et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas[J]. Scientific Reports, 5, 10148(2015).

    [69] Zhou H B, Su X Z, Minoofar A et al. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications[J]. Optics Express, 30, 25418-25432(2022).

    [70] Yan Y, Li L, Zhao Z et al. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing[C](2016).

    [71] Sasaki H, Lee D, Fukumoto H et al. Experiment on over-100-Gbps wireless transmission with OAM-MIMO multiplexing system in 28-GHz band[C](2018).

    [72] Fang Y, Yu J J, Zhang J W et al. Ultrahigh-capacity access network architecture for mobile data backhaul using integrated W-band wireless and free-space optical links with OAM multiplexing[J]. Optics Letters, 39, 4168-4171(2014).

    [73] Earle M. Infrared system engineering[J]. IEEE Transactions on Automatic Control, 16, 392-393(1971).

    [74] Prasad N S, Majumdar A K, Ricklin J C. Optical Communications in the mid-wave IR spectral band[M]. Free-space laser communications. Optical and fiber communications reports, 2, 347-391(2005).

    [75] Arnulf A, Bricard J, Curé E et al. Transmission by haze and fog in the spectral region 0.35 to 10 microns[J]. Journal of the Optical Society of America, 47, 491-498(1957).

    [76] Gailele L, Maweza L, Dudley A et al. Multiplexing of spatial modes in the mid-IR region[J]. Proceedings of SPIE, 10090, 100900Z(2017).

    [77] Zou K H, Pang K, Song H et al. High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region[J]. Nature Communications, 13, 7662(2022).

    [78] Willner A E, Zou K H, Pang K et al. Free-space mid-IR communications using wavelength and mode division multiplexing[J]. Optics Communications, 541, 129518(2023).

    [79] Wheeler N V, Heidt A M, Baddela N K et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber[J]. Optics Letters, 39, 295-298(2014).

    [80] Yu M J, Okawachi Y, Griffith A G et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).

    [81] Walsh M J, Reddy R K, Bhargava R. Label-free biomedical imaging with mid-IR spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1502-1513(2012).

    [82] Soibel A, Wright M W, Farr W H et al. Midinfrared interband cascade laser for free space optical communication[J]. IEEE Photonics Technology Letters, 22, 121-123(2010).

    [83] Pang X D, Schatz R, Joharifar M et al. Direct modulation and free-space transmissions of up to 6 Gbps multilevel signals with a 4.65 μm quantum cascade laser at room temperature[J]. Journal of Lightwave Technology, 40, 2370-2377(2022).

    [84] Dely H, Bonazzi T, Spitz O et al. 10 Gbit s-1 free space data transmission at 9 µm wavelength with unipolar quantum optoelectronics[J]. Laser & Photonics Reviews, 16, 2100414(2022).

    [85] Pang X D, Dely H, Schatz R et al. 11 Gb/s LWIR FSO Transmission at 9.6 µm using a Directly-Modulated Quantum Cascade Laser and an Uncooled Quantum Cascade Detector[C](2022).

    [86] Cho P S, Harston G, Büchter K D F et al. Optical homodyne RZ-QPSK transmission through wind tunnel at 3.8 and 1.55 micron via wavelength conversion[J]. Proceedings of SPIE, 7324, 73240A(2009).

    [87] Su Y L, Wang W, Hu X H et al. 10 Gbps DPSK transmission over free-space link in the mid-infrared[J]. Optics Express, 26, 34515-34528(2018).

    [88] Wang W, Zheng Y Q, Xie X P et al. 5 Gbaud QPSK coherent transmission in the mid-infrared[J]. Optics Communications, 466, 125681(2020).

    [89] Zou K H, Pang K, Song H et al. Demonstration of free-space 300-gbit/s QPSK communications using both wavelength- and mode- division-multiplexing in the mid-IR[C](2021).

    [90] Su Y L, Tian W L, Yu Y et al. Free-space transmission of picosecond-level, high-speed optical pulse streams in the 3 µm band[J]. Optics Express, 31, 27433-27449(2023).

    [91] Didier P, Dely H, Spitz O et al. Progress in high-speed optical links in the 8 to 12 µm thermal atmospheric window from the perspective of unipolar quantum technology[J]. Proceedings of SPIE, 12515, 1251507(2023).

    [92] Su Y L, Meng J C, Wei T T et al. 150 Gbps multi-wavelength FSO transmission with 25-GHz ITU-T grid in the mid-infrared region[J]. Optics Express, 31, 15156-15169(2023).

    [93] Han M Y, Joharifar M, Wang M G et al. High spectral efficiency long-wave infrared free-space optical transmission with multilevel signals[J]. Journal of Lightwave Technology, 41, 6514-6520(2023).

    [94] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [95] Wang J, Li S H, Luo M et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C](2014).

    [96] Wang J, Liu J, Lv X et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C](2015).

    [97] Zhao Y F, Wang A D, Zhu L et al. High-speed spatial light modulation enabling 25-Gbit/s twisted light encoding/decoding and 260-m security free-space data transmission[J]. Optics Letters, 48, 5571-5574(2023).

    [98] Liang Y Z, Su X Z, Cai C K et al. Adaptive turbulence compensation and fast auto-alignment link for free-space optical communications[J]. Optics Express, 29, 40514-40523(2021).

    [99] Gibson G, Courtial J, Padgett M et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).

    [100] Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array[J]. Scientific Reports, 5, 9662(2015).

    [101] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer[J]. Optics Express, 26, 13183-13194(2018).

    [102] Willner A J, Ren Y X, Xie G D et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes[J]. Optics Letters, 40, 5810-5813(2015).

    [103] Fu S Y, Zhai Y W, Zhou H et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Optics Letters, 44, 4753-4756(2019).

    [104] Fu S Y, Zhai Y W, Zhou H et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Optics Express, 27, 33111-33119(2019).

    [105] Zhu L, Wei X L, Wang J et al. Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications[C](2014).

    [106] Ren Y X, Wang Z, Liao P C et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m[J]. Optics Letters, 41, 622-625(2016).

    [107] Zhao Y F, Liu J, Du J et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing[C](2016).

    [108] Zhao Y F, Liu J, Li S H et al. Secure optical interconnects using orbital angular momentum beams multiplexing/multicasting[J]. Advanced Photonics Nexus, 3, 016004(2023).

    [109] Krenn M, Fickler R, Fink M et al. Twisted light communication through turbulent air across Vienna[EB/OL]. https://arxiv.org/abs/1402.2602v1

    [110] Cai C K, Zhao Y F, Zhang J Y et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C](2019).

    [111] Morgan K S, Miller J K, Cochenour B M et al. Free space propagation of concentric vortices through underwater turbid environments[J]. Journal of Optics, 18, 104004(2016).

    [112] Zhao Y F, Xu J, Wang A D et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link[J]. Optics Express, 25, 28743-28751(2017).

    [113] Ren Y X, Li L, Wang Z et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 6, 33306(2016).

    [114] Zhao Y F, Wang A D, Zhu L et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 42, 4699-4702(2017).

    [115] Wang A D, Zhu L, Zhao Y F et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 26, 8669-8678(2018).

    [116] Zhao Y F, Cai C K, Zhang J R et al. Feedback-enabled adaptive underwater twisted light transmission link utilizing the reflection at the air-water interface[J]. Optics Express, 26, 16102-16112(2018).

    [117] Cai C K, Zhao Y F, Zhang J Y et al. Fast auto-alignment underwater wireless optical communications employing orbital angular momentum modes[J]. Optics Continuum, 1, 2590-2599(2022).

    [118] Wang J, Wang Z Y. Underwater orbital angular momentum optical communications[J]. Acta Optica Sinica, 44, 0400001(2024).

    [119] Djordjevic I B. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation[J]. Optics Express, 19, 14277-14289(2011).

    [120] Sachdeva S, Kaur S, Arora R et al. Ultra-high capacity optical satellite communication system using PDM-256-QAM and optical angular momentum beams[J]. Sensors, 23, 786(2023).

    [121] Wang Z Q, Malaney R, Burnett B. Satellite-to-earth quantum key distribution via orbital angular momentum[J]. Physical Review Applied, 14, 064031(2020).

    [122] Djordjevic I B. OAM-based hybrid free-space optical-terahertz multidimensional coded modulation and physical-layer security[J]. IEEE Photonics Journal, 9, 7905812(2017).

    [123] Wang Z Q, Malaney R, Green J. Detecting orbital angular momentum of light in satellite-to-ground quantum communications[C](2019).

    [124] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 40, 4827-4830(2015).

    [125] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 40, 4843-4846(2015).

    [126] Chen S, Li S H, Zhao Y F et al. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation[J]. Optics Letters, 41, 4680-4683(2016).

    [127] Zhu L, Wang A D, Wang J. Free-space data-carrying bendable light communications[J]. Scientific Reports, 9, 14969(2019).

    [128] Lin W, Wen Y H, Chen Y J et al. Resilient free-space image transmission with helical beams[J]. Physical Review Applied, 12, 044058(2019).

    [129] Milione G, Lavery M P J, Huang H et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 40, 1980-1983(2015).

    [130] Chen S Q, Xie Z Q, Ye H P et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. Light, Science & Applications, 10, 222(2021).

    [131] Zhao Y F, Li S H, Du J et al. Demonstration of a visible-light parallel communication link based on hexadecimal vector beam array coding/decoding[C](2017).

    [132] Williams W D, Collins M, Boroson D M et al. RF and optical communications: a comparison of high data rate returns from deep space in the 2020 timeframe[EB/OL]. https://ntrs.nasa.gov/citations/20070017310

    [133] Sova R M, Sluz J E, Young D W et al. 80 Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[J]. Proceedings of SPIE, 6304, 630414(2006).

    [134] Jeganathan M, Wilson K E, Lesh J R. Preliminary analysis of fluctuations in the received uplink-beacon-power data obtained from the GOLD experiments[EB/OL]. https://ipnpr.jpl.nasa.gov/progress_report/42-124/124J.pdf

    [135] Henniger H, Wilfert O. An introduction to free-space optical communications[J]. Radioengineering, 19, 203-212(2010).

    [136] Sturza M. The teledesic satellite system: overview and design trades[EB/OL]. https://www.academia.edu/11450518/THE_TELEDESIC_SATELLITE_SYSTEM_OVERVIEW_AND_DESIGN_TRADES

    [137] Franz J, Jain V K. Optical communications: components and systems: analysis·design·optimization·application[EB/OL]. https://searchworks.stanford.edu/view/4500280

    Jian Wang, Zhongyang Wang, Jinfeng Liu, Shuo Wang. Wireless Communication Technologies using Vortex Electromagnetic Waves (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706001
    Download Citation