• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0107002 (2024)
Weisong Zhao1, Yuanyuan Huang1, Zhenqian Han1, Liying Qu1, Haoyu Li1、*, and Liangyi Chen2、**
Author Affiliations
  • 1School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin 150080, Heilongjiang , China
  • 2School of Future Technology, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/CJL231214 Cite this Article Set citation alerts
    Weisong Zhao, Yuanyuan Huang, Zhenqian Han, Liying Qu, Haoyu Li, Liangyi Chen. Deconvolution in Super-Resolution Fluorescence Microscopy (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0107002 Copy Citation Text show less
    References

    [1] Pan W H, Li W, Qu J H et al. Research progress on organic fluorescent probes for single molecule localization microscopy[J]. Chinese Journal of Applied Chemistry, 36, 269-281(2019).

    [2] Wang G C, Chen T S. Super-resolution structural characteristics of subcellular organelles in living cells[J]. Chinese Journal of Lasers, 49, 2007203(2022).

    [3] Vangindertael J, Camacho R, Sempels W et al. An introduction to optical super-resolution microscopy for the adventurous biologist[J]. Methods and Applications in Fluorescence, 6, 022003(2018).

    [4] Shao L, Kner P, Rego E H et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 8, 1044-1046(2011).

    [5] Wildanger D, Medda R, Kastrup L et al. A compact STED microscope providing 3D nanoscale resolution[J]. Journal of Microscopy, 236, 35-43(2009).

    [6] Markwirth A, Lachetta M, Mönkemöller V et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 10, 4315(2019).

    [7] Schmidt R, Weihs T, Wurm C A et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope[J]. Nature Communications, 12, 1478(2021).

    [8] Zhao W S, Zhao S Q, Li L J et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J]. Nature Biotechnology, 40, 606-617(2022).

    [9] Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared and Laser Engineering, 51, 20220110(2022).

    [10] Zhao W S. Study on super-resolution microscopic imaging method of living cells based on joint constraint model[D](2022).

    [11] Wiener N[M]. Extrapolation, interpolation, and smoothing of stationary time series, with engineering applications(1949).

    [12] Landweber L. An iteration formula for Fredholm integral equations of the first kind[J]. American Journal of Mathematics, 73, 615-624(1951).

    [13] Agard D A, Sedat J W. Three-dimensional architecture of a polytene nucleus[J]. Nature, 302, 676-681(1983).

    [14] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 62, 55-59(1972).

    [15] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 79, 745(1974).

    [16] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation[J]. IEEE Transactions on Image Processing, 1, 322-336(1992).

    [17] van Kempen G M P, van Vliet L J. Background estimation in nonlinear image restoration[J]. Journal of the Optical Society of America A, 17, 425-433(2000).

    [18] de Monvel J B, le Calvez S, Ulfendahl M. Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ[J]. Biophysical Journal, 80, 2455-2470(2001).

    [19] de Monvel J B, Scarfone E, le Calvez S et al. Image-adaptive deconvolution for three-dimensional deep biological imaging[J]. Biophysical Journal, 85, 3991-4001(2003).

    [20] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 60, 259-268(1992).

    [21] Dey N, Blanc-Feraud L, Zimmer C et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution[J]. Microscopy Research and Technique, 69, 260-266(2006).

    [22] Laasmaa M, Vendelin M, Peterson P. Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images[J]. Journal of Microscopy, 243, 124-140(2011).

    [23] Rodríguez P. Total variation regularization algorithms for images corrupted with different noise models: a review[J]. Journal of Electrical and Computer Engineering, 2013, 217021(2013).

    [24] Aujol J F. Some first-order algorithms for total variation based image restoration[J]. Journal of Mathematical Imaging and Vision, 34, 307-327(2009).

    [25] Verveer P J, Gemkow M J, Jovin T M. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy[J]. Journal of Microscopy, 193, 50-61(1999).

    [26] Chan T, Marquina A, Mulet P. High-order total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 22, 503-516(2000).

    [27] Lefkimmiatis S, Ward J P, Unser M. Hessian Schatten-norm regularization for linear inverse problems[J]. IEEE Transactions on Image Processing, 22, 1873-1888(2013).

    [28] Arigovindan M, Fung J C, Elnatan D et al. High-resolution restoration of 3D structures from widefield images with extreme low signal-to-noise-ratio[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 17344-17349(2013).

    [29] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [30] Antipa N, Kuo G, Heckel R et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 5, 1-9(2017).

    [31] Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, 301-320(2005).

    [32] Gustafsson M G L, Shao L, Carlton P M et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).

    [33] Lukeš T, Křížek P, Švindrych Z et al. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation[J]. Optics Express, 22, 29805-29817(2014).

    [34] Perez V, Chang B J, Stelzer E H K. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution[J]. Scientific Reports, 6, 37149(2016).

    [35] Wen G, Li S M, Wang L B et al. High-fidelity structured illumination microscopy by point-spread-function engineering[J]. Light: Science & Applications, 10, 70(2021).

    [36] Wang Z J, Zhao T Y, Hao H W et al. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy[J]. Advanced Photonics, 4, 026003(2022).

    [37] Qian J M, Cao Y, Bi Y et al. Structured illumination microscopy based on principal component analysis[J]. eLight, 3, 4(2023).

    [38] Tang Y J, Wang L B, Wen G et al. Recent advances in structured illumination microscope super-resolution image reconstruction[J]. Laser & Optoelectronics Progress, 59, 0617009(2022).

    [39] Zhou B, Wang K H, Chen L Y. Recent progress on the reconstruction algorithms of structured illumination microscopy[J]. Chinese Optics, 1211-1227(2022).

    [40] Chu K Q, McMillan P J, Smith Z J et al. Image reconstruction for structured-illumination microscopy with low signal level[J]. Optics Express, 22, 8687-8702(2014).

    [41] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [42] Yu W, Li Y Y, Jooken S et al. Second-order optimized regularized structured illumination microscopy (sorSIM) for high-quality and rapid super resolution image reconstruction with low signal level[J]. Optics Express, 28, 16708-16724(2020).

    [43] Kamilov U S. A parallel proximal algorithm for anisotropic total variation minimization[J]. IEEE Transactions on Image Processing, 26, 539-548(2017).

    [44] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).

    [45] Cai M X, Zhu H F, Sun Y L et al. Total variation and spatial iteration-based 3D structured illumination microscopy[J]. Optics Express, 30, 7938-7953(2022).

    [46] Mudry E, Belkebir K, Girard J et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 6, 312-315(2012).

    [47] Min J H, Jang J, Keum D et al. Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery[J]. Scientific Reports, 3, 2075(2013).

    [48] Mangeat T, Labouesse S, Allain M et al. Super-resolved live-cell imaging using random illumination microscopy[J]. Cell Reports Methods, 1, 100009(2021).

    [49] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [50] Guo Y T, Li D, Zhang S W et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).

    [51] Müller C B, Enderlein J. Image scanning microscopy[J]. Physical Review Letters, 104, 198101(2010).

    [52] York A G, Parekh S H, Nogare D D et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 9, 749-754(2012).

    [53] Schulz O, Pieper C, Clever M et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 21000-21005(2013).

    [54] Ingaramo M, York A G, Hoogendoorn E et al. Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths[J]. Chemphyschem, 15, 794-800(2014).

    [55] Ströhl F, Kaminski C F. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data[J]. Methods and Applications in Fluorescence, 3, 014002(2015).

    [56] Yu J Y, Becker S R, Folberth J et al. Achieving superresolution with illumination-enhanced sparsity[J]. Optics Express, 26, 9850-9865(2018).

    [57] Xing J, Chen S M, Becker S et al. l1-regularized maximum likelihood estimation with focused-spot illumination quadruples the diffraction-limited resolution in fluorescence microscopy[J]. Optics Express, 28, 39413-39429(2020).

    [58] Yu J Y, Narumanchi V V, Chen S M et al. Analyzing the super-resolution characteristics of focused-spot illumination approaches[J]. Journal of Biomedical Optics, 25, 056501(2020).

    [59] Tenne R, Rossman U, Rephael B et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 13, 116-122(2019).

    [60] Rossman U, Tenne R, Solomon O et al. Rapid quantum image scanning microscopy by joint sparse reconstruction[J]. Optica, 6, 1290-1296(2019).

    [61] Hayashi S, Okada Y. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics[J]. Molecular Biology of the Cell, 26, 1743-1751(2015).

    [62] Wang X, Tu S J, Liu X et al. Advance and prospect for three-dimensional super-resolution microscopy[J]. Laser & Optoelectronics Progress, 58, 2200001(2021).

    [63] Zanella R, Zanghirati G, Cavicchioli R et al. Towards real-time image deconvolution: application to confocal and STED microscopy[J]. Scientific Reports, 3, 2523(2013).

    [64] Dreier J, Castello M, Coceano G et al. Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo[J]. Nature Communications, 10, 556(2019).

    [65] Prigent S, Nguyen H N, Leconte L et al. SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos[J]. Scientific Reports, 13, 1489(2023).

    [66] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).

    [67] Dertinger T, Colyer R, Vogel R et al. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI)[J]. Optics Express, 18, 18875-18885(2010).

    [68] Geissbuehler S, Bocchio N L, Dellagiacoma C et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI)[J]. Optical Nanoscopy, 1, 1-7(2012).

    [69] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 79, 745-754(1974).

    [70] Cox S, Rosten E, Monypenny J et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 9, 195-200(2012).

    [71] Xu F, Zhang M S, He W T et al. Live cell single molecule-guided Bayesian localization super resolution microscopy[J]. Cell Research, 27, 713-716(2017).

    [72] Li H J, Xu F, Gao S et al. Live-SIMBA: an ImageJ plug-in for the universal and accelerated single molecule-guided Bayesian localization super resolution microscopy (SIMBA) method[J]. Biomedical Optics Express, 11, 5842-5859(2020).

    [73] Geissbuehler S, Sharipov A, Godinat A et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging[J]. Nature Communications, 5, 5830(2014).

    [74] Hugelier S, de Rooi J J, Bernex R et al. Sparse deconvolution of high-density super-resolution images[J]. Scientific Reports, 6, 21413(2016).

    [75] Qin J, Yi X Y, Weiss S et al. Shearlet-TGV based fluorescence microscopy image deconvolution[R], 14-32(2014).

    [76] Guo K, Kutyniok G, Labate D. Sparse multidimensional representations using anisotropic dilation and shear operators[J]. Wavelets and Splines, 14, 189-201(2006).

    [77] Bredies K, Kunisch K, Pock T. Total generalized variation[J]. SIAM Journal on Imaging Sciences, 3, 492-526(2010).

    [78] Gustafsson N, Culley S, Ashdown G et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[J]. Nature Communications, 7, 12471(2016).

    [79] Laine R F, Heil H S, Coelho S et al. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation[EB/OL]. https:∥www.biorxiv.org/content/10.1101/2022.04.07.487490v3

    [80] Torres-García E, Pinto-Cámara R, Linares A et al. Extending resolution within a single imaging frame[J]. Nature Communications, 13, 7452(2022).

    [81] Zhao G Y, Zheng C, Kuang C F et al. Resolution-enhanced SOFI via structured illumination[J]. Optics Letters, 42, 3956-3959(2017).

    [82] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [83] Demmerle J, Wegel E, Schermelleh L et al. Assessing resolution in super-resolution imaging[J]. Methods, 88, 3-10(2015).

    [84] Yi X Y[M]. Super resolution of Optical Fluctuation Imaging 2.0 (SOFI-2.0): towards fast super resolved imaging of live cells(2017).

    [85] Watanabe T M, Fukui S, Jin T et al. Real-time nanoscopy by using blinking enhanced quantum dots[J]. Biophysical Journal, 99, L50-L52(2010).

    [86] Wang X H, Zhong J P, Wang M Y et al. Enhanced temporal and spatial resolution in super‐resolution covariance imaging algorithm with deconvolution optimization[J]. Journal of Biophotonics, 14, e202000292(2021).

    [87] Zhao W S, Zhao S Q, Han Z Q et al. Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging[J]. Nature Photonics, 17, 806-813(2023).

    [88] Monga V, Li Y L, Eldar Y C. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing[J]. IEEE Signal Processing Magazine, 38, 18-44(2021).

    [89] Li Y, Su Y J, Guo M et al. Incorporating the image formation process into deep learning improves network performance[J]. Nature Methods, 19, 1427-1437(2022).

    [90] Luo X L, Zhou Z, Huang J F et al. Resolution evaluation method and applications of 3D microscopic images[J]. Chinese Journal of Lasers, 49, 0507205(2022).

    [91] Koho S, Tortarolo G, Castello M et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy[J]. Nature Communications, 10, 3103(2019).

    [92] Zhao W S, Huang X S, Yang J Y et al. Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation[EB/OL]. https:∥www.biorxiv.org/content/10.1101/2022.12.01.518675v1

    Weisong Zhao, Yuanyuan Huang, Zhenqian Han, Liying Qu, Haoyu Li, Liangyi Chen. Deconvolution in Super-Resolution Fluorescence Microscopy (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0107002
    Download Citation