• Photonic Sensors
  • Vol. 9, Issue 1, 19 (2019)
Lingfang WANG1、2、*, Keyu REN1, Bao SUN1, and Kaixin CHEN1
Author Affiliations
  • 1School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2Hansen Experimental Physics Laboratory, Department of Physics, Stanford University, Stanford 94305, USA
  • show less
    DOI: 10.1007/s13320-018-0520-y Cite this Article
    Lingfang WANG, Keyu REN, Bao SUN, Kaixin CHEN. Highly Sensitive Refractive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding[J]. Photonic Sensors, 2019, 9(1): 19 Copy Citation Text show less
    References

    [1] Y. L. Wang, B. W. Gao, K. Zhang, K. Yuan, Y. Wan, Z. A. Xie, et al., “Refractive index sensor based on leaky resonant scattering of single semiconductor nanowire,” ACS Photonics, 2017, 4(3): 688–694.

    [2] Z. T. Gu, T. Luo, and K. Gao, “Structure design of refractive index sensor based on LPFG with double-layer coatings,” Optical & Quantum Electronics, 2013, 45(7): 761-768.

    [3] Q. T. Wang, G. J. Liu, X. Zhang, Y. J. Wang, and C. Li, “Highly sensitive long period fiber grating refractive index sensor based on thin cladding,” in Proceeding of 2015 International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, 2015, pp. 455-460.

    [4] C. X. Teng, F. D. Yu, Y. Ding, and J. Zheng, “Refractive index sensor based on multi-mode plastic optical fiber with long period grating,” SPIE, 2017, 10231: 10231-1-10231-6.

    [5] R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, et al., “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors, 2010, 10(7): 6788-6795.

    [6] A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Optics Express, 2008, 16(16): 11930-11936.

    [7] I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Optics Letters, 2006, 31(9): 1319-1321.

    [8] M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on snow ring resonators,” Optics Express, 2011, 19(18): 17575-17584.

    [9] L. Leidner, M. Ewald, M. Sieger, B. Mizaikoff, and G. Gauglitz, “Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region,” SPIE, 2013, 8774(2): 140-144.

    [10] K. Misiakos, I. Raptis, E. Makarona,A. Botsialas, A. Salapatas, P. Oikonomou, et al., “All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor,” Optics Express, 2014, 22(22): 26803-26813.

    [11] T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics Journal, 2009, 1(3): 197-204.

    [12] V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Applied Optics, 2002, 41(30): 6351-6355.

    [13] M. S. Kwon and S. Y. Shin, “Tunable polymer waveguide notch filter using a thermo optic long-period grating,” IEEE Photonics Technology Letters, 2005, 17(1): 145-147.

    [14] K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, and K. P. Lor, “Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide,” IEEE Photonics Technology Letters, 2006, 18(9): 1109-1111.

    [15] L. F. Wang, Q. Q. Song, J. Y. Wu, and K. X. Chen, “Low-power variable optical attenuator based on a hybrid SiON-polymer S-bend waveguide,” Applied Optics, 2016, 55(5): 969-973.

    [16] Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Applied Physics Letters, 2005, 86(24): 241115-1-241115-3.

    [17] Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Applied Optics, 2006, 45(12): 2755-2760.

    [18] W. Jin, K. S. Chiang, and Q. Liu, “Electro-optic long-period waveguide gratings in lithium niobate,” Optics Express, 2008, 16(25): 20409-20417.

    [19] C. K. Chow, K. S. Chiang, Q. Liu, K. P. Lor, and H. P. Chan, “UV-written long-period waveguide grating coupler for broadband add/drop multiplexing,” Optics Communications, 2009, 282: 378-381.

    [20] M. S. Kwon and S. Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photonics Technology Letters, 2005, 17(9): 1923-1925.

    [21] Q. Liu and K. S. Chiang, “Refractive-index sensor based on long-range surface plasmon mode excitation with long-period waveguide grating,” Optics Express, 2009, 17(10): 7933-7942.

    [22] R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sensors & Actuators B: Chemical, 2007, 123(1): 10-12.

    [23] R. Slavík and J. Homola, “Optical multilayers for LED-based surface plasmon resonance sensors,” Applied Optics, 2006, 45(16): 3752–3759.

    [24] Q. Wang, C. Du, J. M. Zhang, R. Q. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fibre grating,” Optics Communications, 2016, 377: 89-93.

    [25] V. R. Mamidi, K. Srimannarayana, L. N. S. Ravinuthala, S. S. Madhuvarasu, T. V. Rao, V. R. Pachava, et al., “Fibre Bragg grating-based high temperature sensor and its low-cost interrogation system with enhanced resolution,” Optica Applicata, 2014, 44(2): 299-308.

    Lingfang WANG, Keyu REN, Bao SUN, Kaixin CHEN. Highly Sensitive Refractive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding[J]. Photonic Sensors, 2019, 9(1): 19
    Download Citation