• Laser & Optoelectronics Progress
  • Vol. 49, Issue 1, 10002 (2012)
Chen Baosuan*, Zhang Junyong, Zhang Yanli, Liu Dean, and Zhu Jianqiang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop49.010002 Cite this Article Set citation alerts
    Chen Baosuan, Zhang Junyong, Zhang Yanli, Liu Dean, Zhu Jianqiang. Study of Small-Scale Self-Focusing in High-Power Laser System[J]. Laser & Optoelectronics Progress, 2012, 49(1): 10002 Copy Citation Text show less
    References

    [1] E. S. Bliss, J. T. Hunt, P. A. Renard. Effects of nonlinear propagation on laser focusing properties[J]. IEEE J. Quantum Electron., 1976, QE-12(7): 402~406

    [2] B. R. Suydam. Self-focusing of very powerful laser beams II[J]. IEEE J. Quantum Electron., 1974, QE-10(11): 837~843

    [3] J. H. Marburger. Self-focusing theory[J]. Prog. Quantum Electron., 1975, 4: 35~110

    [4] J. A. Fleck, Jr., C. Layne. Study of self-focusing damage in a high-power Ndglass-rod amplifer[J]. Appl. Phys. Lett., 1973, 22(9): 467~469

    [5] A. J. Campillo, S. L. Shapiro, B. R. Suydam. Periodic breakup of optical beams due to self-focusing[J]. Appl. Phys. Lett., 1973, 23(11): 628~630

    [6] V. I. Bespalov, V. I. Talanov. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett., 1966, 3(11): 307~310

    [7] J. A. Fleck, Jr., J. R. Morris, E. S. Bliss. Small-scale self-focusing effects in a high power glass laser amplifier[J]. IEEE J. Quantum Electron., 1978, QE-14(5): 353~363

    [8] S. R. Jokipii, J. Marbmger. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Appl. Phys. Lett., 1973, 23(12): 696~698

    [9] S. B. Trenholm. Small-scale instability growth [R]. Lawrence Livermore-Laboratory Laser Program Annual Report-1974, 1975 UCRL50021-74: 179~191

    [10] N. B. Baranova, N. E. Bykovskii, B. Yazel′dovich et al.. Diffraction and self-focusing during amplification of high-power light pulses. I. development of diffraction and self-focusing in an amplifier[J]. Sov. J. Quantum Elecron., 1975, 4(11): 1354~1361

    [11] Wen Shuangchun, Fan Dianyuan. Non-paraxial propagation of optical beams in nonlinear self-focusing media[J]. Chinese J. Lasers, 2001, A28(12): 1066~1070

    [12] Wen Shuangchun, Fan Dianyuan. Theory of small-scale self-focusing of intense laser beams in media with gain and loss[J]. Acta Physica Sinica, 2000, 49(7): 1282~1286

    [13] Wen Shuangchun, Fan Dianyuan. Nonlinear theory of filamentation of intense laser beams[J]. Acta Optica Sinica, 2001, 21(12): 1458~1462

    [14] W. Williams, J. Trenholme, C. Orth et al.. NIF design optimization [R]. Lawrence Livermore Laboratory Laser Program Quarterly Report, 1996, UCRL-LR-105821-96-4: 181~191

    [15] Joshua E. Rothenberg. Pulse splitting during self-focusing in normally dispersive media[J]. Opt. Lett., 1992, 17(8): 583~585

    [16] Feng Zehu, Fu Xiquan, Zhang Lifu et al.. Experimental research of small-scale self-focusing of ultrashort pulse with spatial modulation[J]. Acta Optica Sinica, 2008, 57(4): 2253~2259

    [17] Zhang Shuanggen, Huang Zhangchao, Xue Yuming et al.. Self-focusing effect of ultra-short laser pulse propagation during quasi-phase matched crystal[J]. Chinese J. Lasers, 2010, 37(10): 2550~2553

    [18] F. Shimizu. Numerical calculation of self-focusing and trapping of a short light pulse in Kerr liquids[J]. IBM J. Research and Development, 1973, 17(4): 286~289

    [19] Kiessling Armin, Rausch Anne, Matusevich Vladislav et al.. Self-focusing in a BaTiO3 crystal without external electric fields[C]. SPIE, 2006, 6027: 60270B

    [20] W. G. Wagner, H. A. Haus, J. H. Marburger. Large-scale self-trapping of optical beams in the paraxial ray approximation[J]. Phys. Rev., 1968, 175(1): 256~266

    [21] A. L. Dyshko, V. N. Lugovoi, A. M. Prokhorov. Self-focusing of intense light beams[J]. JETP Lett., 1967, 6(5): 146~148

    [22] M. D. Feit, J. A. Fleck, Jr. Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams[J]. J. Opt. Soc. Am. B, 1988, 5: 633~640

    [23] M. M. Loy, Y. R. Shen. Small-scale filaments in liquids and tracks of moving foci[J]. Phys. Rev. Lett., 1969, 22(19): 994~997

    [24] E. S. Bliss, J. T. Hunt, P. A. Renard et al.. Whole-beam self-focusing, focal zoom [R]. Lawrence Livermore-Laboratory Laser Program Annual Report-1975, 1976, UCRL-50021-75: 225~227

    [25] A. Dubik, A. Sarzynski. A study of the problem of propagation and focusing of laser radiation in an apertured super-Gaussian form[J]. J. Techn. Phys. Polish Acad. Sci., 1984, 25(3-4): 441~445

    [26] P. L. Kelly. Self-focusing of optical beams[J]. Phys. Rev. Lett., 1965, 15(26): 1005~1008

    [27] J. Murray, R. Sacks, J. Auerbach et al.. Laser requirements and performance [R]. Lawrence Livermore-Laboratory Laser Program Quarterly Report, 1996, UCRL-LR-105821-97-3: 99~105

    [28] U. Roth, F. Loewenthal, R. Tommasini et al.. Compensation of nonlinear self-focusing in high-power lasers[J]. IEEE J. Quantum Electron., 2000, 36(6): 687~691

    [29] G. M. Muslu, H. A. Erbay. High-order split-step Fourier schemes for the generalized nonlinear Schrodinger equation[J]. Math. Comput. Simulat., 2005, 67(6): 581~595

    [30] M. D. Feit, J. A. Fleck. Light propagation in graded-index optical fibers[J]. Appl. Opt., 1978, 17(24): 3990~3998

    [31] H. M. Ozaktas, B. Barshan, D. Mendlovic. Fractional Fourier transforms as a tool for analyzing beam propagation and spherical mirror resonators[J]. Opt. Lett., 1994, 19(21): 1678~1680

    [32] H. Bercegol, L. Lamaignère, B. Le Garrec et al.. Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm[C]. SPIE, 2003, 4392: 276~285

    [33] J. T. Hunt, P. A. Renard, W. W. Simmons. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Appl. Opt., 1977, 16(4): 779~782

    [34] Shao Min, Fu Haiwei, Luo Xiaodong et al.. B integral in high power laser system[J]. Optics & Optoelectronic Technology, 2007, 5(6): 1~4

    [35] C. Bibeau, D. R. Speck, R. B. Ehrlich et al.. Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system[J]. Appl. Opt., 1992, 31(27): 5799~5809

    [36] Hidetsugu Yoshida, Hisanori Fujita, Masahiro Nakatsuka et al.. Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction[J]. Jpn J. Appl. Phys., 2006, 45(2A): 766~769

    [37] Li Keyu, Xiang Yong, Feng Bin et al.. Analysis of the errors between measurement and simulation of near field for high-intensity THG[J]. High Power Laser and Particle Beams, 2002, 14(5): 731~734

    [38] Fang Wang, Jingqin Su, Wenyi Wang et al.. Influence of medium-high frequency phase aberrations on 3ω focal spot in frequency tripling[J]. Chin. Opt. Lett., 2007, 5(s): 190~193

    [39] P. Wegner, J. Auerbach, T. Biesiada et al.. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180~189

    [40] Yu Wenyan, Zheng Yuxia, Xie Zhimin et al.. A method of directly measuring B-integral in a high power laser system[J]. Acta Optica Sinica, 1985, 5(1): 19

    [41] A. Adolf, D. Chatrefou, D. Euzenne et al.. Spatial frequencies generation in an optical nonlinear medium[J]. J. Appl. Phys., 1984, 55(11): 4116~4119

    [42] J. T. Hunt, J. A. Glaze, W. W. Simmons et al.. Suppression of self-focusing through low-pass spatial filtering and relay imaging[J]. Appl. Opt., 1978, 17(13): 2053~2057

    [43] K. Fujioka, S. Matsuo, T. Kanabe et al.. Optical properties of rapidly grown KDP crystal improved by thermal conditioning[J]. J. Crystal. Growth., 1997, 181(3): 265~271

    [44] N. B. Baranova, N. E. Bykovskii, B.Ya. Zel′dovich et al.. Diffraction and self-focusing during amplification of high-power light pulses. II. Suppression of harmful influence of diffraction and self-focusing on a laser beam[J]. Sov. J. Quantum Electron., 1975, 4(11): 1362~1366

    [45] V. R. Costich, B. C. Johnson. Apertures to shape high-power laser beams[J]. Laser Focus, 1974, 10(9): 43~46

    [46] B. G. Gorshkov, V. K. Ivanchenko, V. K. Karpovich et al.. Apodizing induced-absorption apertures with a large optical beam diameter and their application in high-power 1.06 mm laser systems[J]. Sov. J. Quantum Electron., 1985, 15(7): 959~962

    [47] S. G. Lukishova. Apodized Apertures for Visible and Near-Infrared Band Powerful Lasers [M]. SPIE Milestone Series, Selected Papers on Apodization: Coherent Optical Systems, J. P. Mills and B.J. Thomson (Eds.), 1996, MS 119: 334~341

    [48] Zhang Lifu, Fu Xiquan, Feng Zehu et al.. Experimental research on the influence of chirped pulse on small-scale self-focusing[J]. Science in China (Series G:Physics, Mechanics & Astronomy), 2008, 38(10): 1372~1379

    [49] P. W. McKenty, J. H. Kelly, R. W. Short et al.. Self-focusing of broad bandwidth laser light [R]. LLE/LLNL Workshop Laser Science and ICF Target Science Collaborative Research, 1992, Rochester

    [50] M. P. Vanyukov, V. I. Kryzhanovskii, V. A. Serebryakov et al.. Laser systems for the generation of picosecond high-irradiance light pulses[J]. Sov. J. Quantum Electron., 1972, 1(5): 483~488

    [51] Yu. V. Senatskii. Active elements for high-power neodymium lasers[J]. Sov. J. Quantum Electron., 1972, 1(5): 521~523

    [52] Yanli Zhang, Xiaoyan Li, Yan Zhang et al.. Small-scale self-focusing of divergent beam in nonlinear media with loss[J]. Chin. Opt. Lett., 2010, 8(2): 210~212

    [53] Zhang Yanli, Li Xiaoyan, Zhu Jianqiang. Small-scale self-focusing of divergent beams in gain medium[J]. Acta Optica Sinica, 2009, 29(3): 786~793

    [54] Gu Yalong, Zhu Jianqiang. Small-scale self-focusing of divergent beams[J]. Acta Optica Sinica, 2006, 26(11): 1734~1738

    [55] A. A. Mak, V. A. Serebryakov, V. E. Yashin. Suppression of Self-Focusing in Spatially Incoherent Light Beams [M]. SPIE Milestone Series, Selected Papers on High-Power Lasers, J.M. Soures (Eds.), 1991, MS 43: 460~461

    [56] R. H. Lehmberg, S. P. Obenschain. Use of induced spatial incoherence for uniform illumination of laser fusion targets[J]. Opt. Commun., 1983, 46(1): 27~31

    [57] S. I. Fedotov, L. P. Feoktistov, M. V. Osipov et al.. Laser for ICF with a controllable function of mutual coherence of radiation[J]. J. Sov. Laser Res., 2004, 25(1): 79~92

    [58] P. Donnat, C. Gouedard, D. Veron et al.. Induced spatial incoherence and nonlinear effects in Ndglass amplifiers[J]. Opt. Lett., 1992, 17(5): 331~333

    [59] D. Auric, A. Labadens. On the use of a circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier[J]. Opt. Commun., 1977, 21(2): 241~242

    [60] S. N. Vlasov, V. I. Kryzhanovski, V. E. Yashin. Use of circularly polarized optical beams to suppress self-focusing instability in a nonlinear cubic medium with repeaters[J]. Sov. J. Quantum Electron., 1982, 12(1): 7~10

    [61] G. Fibich, B. Ilan. Self-focusing of circularly polarized beams[J]. Phys. Rev. E, 2003, 67(3): 036622

    [62] W. W. Simmons, W. F. Hagen, J. T. Hunt et al.. Performance improvements through image relaying [R]. Lawrence Livermore-Laboratory Laser Program Annual Report-1976, 1977, UCRL-50021-76: 2-19-2-28

    [63] W. W. Simmons, J. E. Murray, F. Rainer et al.. Design, theory, and performance of a high-intensity spatial filter [R]. Lawrence Livermore-Laboratory Laser Program Annual Report-1974, 1975, UCRL-50021-74: 169~174

    [64] V. N. Alekseev, A. D. Starikov, A. V. Charukhchev et al.. Enhancement of the brightness of radiation from a high-power phosphate-glass Nd3+ laser by spatial filtering of the beam in an amplifying channel[J]. Sov. J. Quantum Electron., 1979, 9(8): 981~984

    [65] J. B. Trenholme. Theory of irregularity growth on laser beams [R]. Lawrence Livermore Laboratory Laser Program Annual Report-1975,1976, UCRL-50021-75: 237~242

    [66] S. M. Babichenko, N. E. Bykovski, Yu. V. Senatski. Feasibility of reducing nonlinear losses in the case of small-scale self-focusing in a piecewise-continuous medium[J]. Sov. J. Quantum Electron., 1982, 12(1): 105~107

    [67] A. A. Mak, L. N. Soms, V. A. Fromzel et al.. Ndglass Lasers [M]. Moscow: Nauka, 1990. 288

    [68] J. M. Auerbach, C. Barker, P. J. Wenger et al.. Frequency tripling of beam noise[C]. SPIE, 3047: 381~386

    [69] A. N. Zherikhin, Yu. A. Matveets, S. V. Chekalin. Self-focusing limitation of brightness in amplification of ultrashort pulses in neodymium glass and yttrium aluminum garnet[J]. Sov. J. Quantum Electron., 1976, 6(7): 858~860

    [70] P. G. Kryukov, Yu. A. Matveets, Yu. V. Senatskii et al.. Mechanisms of radiation energy and power limitation in the amplification of ultrashort pulses in neodymium glass lasers[J]. Sov. J. Quantum Electron., 1973, 3(1): 161~162

    [71] A. E. Siegman. Small-scale self-focusing effects in tapered optical beams, 2002, www.stanford.edu/_siegman/self_focusing_memo.pdf

    [72] A. Baltuska, Z. Wei, M. S. Pshenichnikov et al.. Optical pulse compression to 5 fs at a 1 MHz repetition rate[J]. Opt. Lett., 1997, 22(2): 102~104

    [73] A. A. Zozulya, S. A. Diddams, A. G. van Engen et al.. Propagation dynamics of intense femtosecond pulses: Multiple splittings, coalescence, and continuum generation[J]. Phys. Rev. Lett., 1999, 82(7): 1430~1433

    [74] https://www.llnl.gov/news/newsreleases/2010/nnsa/NR-NNSA-10-10-02.html

    [75] N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko et al.. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses[J]. Opt. Express, 2008, 16(5): 3178~3190

    [76] Li Xiaoyan, Zhang Yanli, Ouyang Xiaoping et al.. Effect of reflection on high power small-scale self-focusing[J]. Chinese J. Lasers, 2010, 37(11): 2844~2848

    CLP Journals

    [1] Li Fuquan, Han Wei, Wang Fang, Zhang Xiaomin, Wei Xiaofeng, Feng Bin, Xiang Yong, Jia Huaiting, Li Keyu. Research Status of Final Optics Assembly in High-Power Laser Facility[J]. Laser & Optoelectronics Progress, 2013, 50(6): 60002

    [2] Zhang Luwei, Li Xiaotong, Cen Zhaofeng, Ruan Wangchao, Luo Hongmei. Research on Nonlinear Degeneration and Compensation of Beam Quality in High Power Laser System[J]. Acta Optica Sinica, 2014, 34(2): 214005

    [3] Jiao Zhaoyang, Zhang Yanli, Zhang Junyong, Zhu Jianqiang. Influence of Phase Distortion on Near Field Beam Quality in Final Target System[J]. Chinese Journal of Lasers, 2014, 41(5): 502004

    [4] Zhang Lifu, Zhang Jinggui, Zhong Haizhe, Chen Ying, Fan Dianyuan. Experimental Study of Nonlinear Propagation of Intense Laser with Diffraction Modulation Induced by a Circular Aperture[J]. Chinese Journal of Lasers, 2014, 41(12): 1202008

    [5] Deng Jianqin, Wang Xinglong, Liu Xia, Xiao Qing. Critical Power for Small-Scale Self-Focusing of Gaussian Beam[J]. Laser & Optoelectronics Progress, 2017, 54(1): 11901

    [6] Liu Rende, Hu Dongxia, Zhao Junpu, Deng Xuewei, Dai Wanjun, Huang Xiaoxia. Assessment Research of Small-Scale Self-Focusing in Intense Laser Beam by Near-Field Intensity Entropy[J]. Acta Optica Sinica, 2015, 35(s2): 226001

    Chen Baosuan, Zhang Junyong, Zhang Yanli, Liu Dean, Zhu Jianqiang. Study of Small-Scale Self-Focusing in High-Power Laser System[J]. Laser & Optoelectronics Progress, 2012, 49(1): 10002
    Download Citation