• Acta Optica Sinica
  • Vol. 43, Issue 16, 1623003 (2023)
Juan Feng1, Bo Wang1,*, and Xianfeng Chen1,2,3
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, Shandong, China
  • show less
    DOI: 10.3788/AOS230895 Cite this Article Set citation alerts
    Juan Feng, Bo Wang, Xianfeng Chen. Photonic Spin Hall Effect in Micro- and Nano-Optics[J]. Acta Optica Sinica, 2023, 43(16): 1623003 Copy Citation Text show less
    References

    [1] Castelvecchi D. The stern-gerlach experiment at 100[J]. Nature Reviews Physics, 4, 140-142(2022).

    [2] Bliokh K Y, Alonso M A, Dennis M R. Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects[J]. Reports on Progress in Physics, 82, 122401(2019).

    [3] Aiello A, Banzer P, Neugebauer M et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 9, 789-795(2015).

    [4] Bliokh K Y, Niv A, Kleiner V et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2, 748-753(2008).

    [5] Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 6, e16276(2017).

    [6] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 101, 030404(2008).

    [7] O’Connor D, Ginzburg P, Rodríguez-Fortuño F J et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 5, 5327(2014).

    [8] Dai H L, Yuan L Q, Yin C et al. Direct visualizing the spin Hall effect of light via ultrahigh-order modes[J]. Physical Review Letters, 124, 053902(2020).

    [9] Berry M V. Optical currents[J]. Journal of Optics A: Pure and Applied Optics, 11, 094001(2009).

    [10] Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 3300(2014).

    [11] Belinfante F J. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields[J]. Physica, 7, 449-474(1940).

    [12] Albaladejo S, Marqués M I, Laroche M et al. Scattering forces from the curl of the spin angular momentum of a light field[J]. Physical Review Letters, 102, 113602(2009).

    [13] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [14] Van Mechelen T, Jacob Z. Universal spin-momentum locking of evanescent waves[J]. Optica, 3, 118-126(2016).

    [15] Abujetas D R, Sánchez-Gil J A. Spin angular momentum of guided light induced by transverse confinement and intrinsic helicity[J]. ACS Photonics, 7, 534-545(2020).

    [16] Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 348, 1448-1451(2015).

    [17] Shi P, Du L P, Li C C et al. Transverse spin dynamics in structured electromagnetic guided waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 2018816118(2021).

    [18] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [19] Lei X R, Yang A P, Shi P et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Physical Review Letters, 127, 237403(2021).

    [20] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 247-262(1956).

    [21] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [22] Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 93, 083901(2004).

    [23] Shitrit N, Bretner I, Gorodetski Y et al. Optical spin Hall effects in plasmonic chains[J]. Nano Letters, 11, 2038-2042(2011).

    [24] Bliokh K Y, Bliokh Y P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Physical Review Letters, 96, 073903(2006).

    [25] Bliokh K Y, Bliokh Y P. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet[J]. Physical Review E, 75, 066609(2007).

    [26] Qin Y, Li Y, He H Y et al. Measurement of spin Hall effect of reflected light[J]. Optics Letters, 34, 2551-2553(2009).

    [27] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [28] Hermosa N, Nugrowati A M, Aiello A et al. Spin Hall effect of light in metallic reflection[J]. Optics Letters, 36, 3200-3202(2011).

    [29] Zhu W G, Zheng H D, Zhong Y C et al. Wave-vector-varying Pancharatnam-Berry phase photonic spin Hall effect[J]. Physical Review Letters, 126, 083901(2021).

    [30] Pan M M, Li Y, Ren J L et al. Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster’s angle[J]. Applied Physics Letters, 103, 071106(2013).

    [31] Ren J L, Wang B, Xiao Y F et al. Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface[J]. Applied Physics Letters, 107, 111105(2015).

    [32] Kong L J, Wang X L, Li S M et al. Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle[J]. Applied Physics Letters, 100, 071109(2012).

    [33] Luo H L, Zhou X X, Shu W X et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 84, 043806(2011).

    [34] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).

    [35] Kim M, Yang Y, Lee D et al. Spin Hall effect of light: from fundamentals to recent advancements[J]. Laser & Photonics Reviews, 17, 2200046(2023).

    [36] Tomita A, Chiao R Y. Observation of Berry′s topological phase by use of an optical fiber[J]. Physical Review Letters, 57, 937-940(1986).

    [37] Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 3, 1102-1108(2015).

    [38] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [39] Bomzon Z, Kleiner V, Hasman E. Pancharatnam: Berry phase in space-variant polarization-state manipulations with subwavelength gratings[J]. Optics Letters, 26, 1424-1426(2001).

    [40] Ling X H, Zhou X X, Yi X N et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light: Science & Applications, 4, e290(2015).

    [41] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [42] Bomzon Z, Biener G, Kleiner V et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 27, 285-287(2002).

    [43] Cohen E, Larocque H, Bouchard F et al. Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond[J]. Nature Reviews Physics, 1, 437-449(2019).

    [44] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [45] Yin X, Ye Z, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [46] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).

    [47] Guo C, Xiao M, Guo Y et al. Meron spin textures in momentum space[J]. Physical Review Letters, 124, 106103(2020).

    [48] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [49] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).

    [50] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020).

    [51] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019).

    [52] Wang J J, Shi L, Zi J A. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum[J]. Physical Review Letters, 129, 236101(2022).

    [53] Wu L H, Hu X A. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 114, 223901(2015).

    [54] Barik S, Karasahin A, Flower C et al. A topological quantum optics interface[J]. Science, 359, 666-668(2018).

    [55] Kuznetsov A I, Miroshnichenko A E, Brongersma M L et al. Optically resonant dielectric nanostructures[J]. Science, 354, aag2472(2016).

    [56] Araneda G, Walser S, Colombe Y et al. Wavelength-scale errors in optical localization due to spin-orbit coupling of light[J]. Nature Physics, 15, 17-21(2019).

    [57] Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light[J]. Science, 346, 67-71(2014).

    [58] Bliokh K Y, Ostrovskaya E A, Alonso M A et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 19, 26132-26149(2011).

    [59] Liu J W, Yang Q A, Chen S Z et al. Intrinsic optical spatial differentiation enabled quantum dark-field microscopy[J]. Physical Review Letters, 128, 193601(2022).

    [60] Neugebauer M, Banzer P, Nechayev S. Emission of circularly polarized light by a linear dipole[J]. Science Advances, 5, eaav7588(2019).

    [61] Rong K X, Wang B, Reuven A et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal[J]. Nature Nanotechnology, 15, 927-933(2020).

    [62] Picardi M F, Zayats A V, Rodríguez-Fortuño F J. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking[J]. Physical Review Letters, 120, 117402(2018).

    [63] Rodríguez-Herrera O G, Lara D, Bliokh K Y et al. Optical nanoprobing via spin-orbit interaction of light[J]. Physical Review Letters, 104, 253601(2010).

    [64] Ling X H, Guan F X, Cai X D et al. Topology-induced phase transitions in spin-orbit photonics[J]. Laser & Photonics Reviews, 15, 2000492(2021).

    [65] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [66] Khorasaninejad M, Chen W T, Zhu A Y et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 16, 4595-4600(2016).

    [67] Mun J, Kim M, Yang Y et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J]. Light: Science & Applications, 9, 139(2020).

    [68] Wang B, Dong F L, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016).

    [69] Maguid E, Yulevich I, Yannai M et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 6, e17027(2017).

    [70] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).

    [71] Zhou X, Ling X, Luo H et al. Identifying graphene layers via spin Hall effect of light[J]. Applied Physics Letters, 101, 251602(2012).

    [72] Sheng L J, Zhou X X, Zhong Y H et al. Exotic photonic spin Hall effect from a chiral interface[J]. Laser & Photonics Reviews, 17, 2200534(2023).

    [73] Zhu T F, Lou Y J, Zhou Y H et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection[J]. Physical Review Applied, 11, 034043(2019).

    [74] Wang R S, He S S, Luo H L. Photonic spin-hall differential microscopy[J]. Physical Review Applied, 18, 044016(2022).

    [75] Magallanes H, Brasselet E. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques[J]. Nature Photonics, 12, 461-464(2018).

    [76] Li G X, Chen S M, Pholchai N et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 14, 607-612(2015).

    [77] Stav T, Faerman A, Maguid E et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 361, 1101-1104(2018).

    [78] Solntsev A S, Agarwal G S, Kivshar Y S. Metasurfaces for quantum photonics[J]. Nature Photonics, 15, 327-336(2021).

    [79] Tang Y T, Li K, Zhang X C et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals[J]. Nature Photonics, 14, 658-662(2020).

    [80] Shen Z, Dogariu A. Subradiant directional memory in cooperative scattering[J]. Nature Photonics, 16, 148-153(2022).

    [81] Yu S, Qiu C W, Chong Y D et al. Engineered disorder in photonics[J]. Nature Reviews Materials, 6, 226-243(2021).

    [82] Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).

    [83] Sheinfux H H, Lumer Y, Ankonina G et al. Observation of Anderson localization in disordered nanophotonic structures[J]. Science, 356, 953-956(2017).

    [84] Park J H, Park C, Yu H et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 7, 454-458(2013).

    [85] Xiong B, Liu Y, Xu Y H et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise[J]. Science, 379, 294-299(2023).

    [86] Maguid E, Yannai M, Faerman A et al. Disorder-induced optical transition from spin Hall to random Rashba effect[J]. Science, 358, 1411-1415(2017).

    [87] Bardon-brun T, Delande D, Cherroret N. Spin Hall effect of light in a random medium[J]. Physical Review Letters, 123, 043901(2019).

    [88] Rikken G L J A, van Tiggelen B A. Observation of magnetically induced transverse diffusion of light[J]. Nature, 381, 54-55(1996).

    [89] Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions[J]. Nature Nanotechnology, 8, 899-911(2013).

    [90] Bruno P, Dugaev V K, Taillefumier M. Topological Hall effect and Berry phase in magnetic nanostructures[J]. Physical Review Letters, 93, 096806(2004).

    [91] Verma N, Addison Z, Randeria M. Unified theory of the anomalous and topological Hall effects with phase-space Berry curvatures[J]. Science Advances, 8, eabq2765(2022).

    [92] Tsesses S, Cohen K, Ostrovsky E et al. Spin-orbit interaction of light in plasmonic lattices[J]. Nano Letters, 19, 4010-4016(2019).

    [93] Karnieli A, Tsesses S, Bartal G et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect[J]. Nature Communications, 12, 1092(2021).

    [94] Wang B, Maguid E, Rong K X et al. Photonic topological spin Hall effect mediated by vortex pairs[J]. Physical Review Letters, 123, 266101(2019).

    [95] Kosterlitz J M. The critical properties of the two-dimensional XY model[J]. Journal of Physics C: Solid State Physics, 7, 1046-1060(1974).

    [96] van Tiggelen B A. Transverse diffusion of light in faraday-active media[J]. Physical Review Letters, 75, 422-424(1995).

    [97] Karpa L, Weitz M. A Stern-Gerlach experiment for slow light[J]. Nature Physics, 2, 332-335(2006).

    [98] Wang B, Rong K X, Maguid E et al. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect[J]. Nature Nanotechnology, 15, 450-456(2020).

    [99] Wang J J, Li H, Ma Y T et al. Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs[J]. Light: Science & Applications, 9, 148(2020).

    [100] Chen Y, Feng J G, Huang Y Q et al. Compact spin-valley-locked perovskite emission[J]. Nature Materials, 1-6(2023).

    [101] Sun L Y, Wang C Y, Krasnok A et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array[J]. Nature Photonics, 13, 180-184(2019).

    [102] Davis T J, Janoschka D, Dreher P et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 368, eaba6415(2020).

    [103] Li G Z, Wang L J, Ye R et al. Direct extraction of topological Zak phase with the synthetic dimension[J]. Light: Science & Applications, 12, 81(2023).

    [104] Yu D Y, Li G Z, Wang L J et al. Moiré lattice in one-dimensional synthetic frequency dimension[J]. Physical Review Letters, 130, 143801(2023).

    [105] Yu D Y, Peng B, Chen X F et al. Topological holographic quench dynamics in a synthetic frequency dimension[J]. Light: Science & Applications, 10, 209(2021).

    [106] Liu J, Su R B, Wei Y M et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 14, 586-593(2019).

    [107] Skjærvø S H, Marrows C H, Stamps R L et al. Advances in artificial spin ice[J]. Nature Reviews Physics, 2, 13-28(2020).