• Photonics Research
  • Vol. 5, Issue 6, 745 (2017)
Lingyan Meng1 and Mengtao Sun2、3、*
Author Affiliations
  • 1College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
  • 2Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
  • 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, P.O. Box 603-146, Beijing 100190, China
  • show less
    DOI: 10.1364/PRJ.5.000745 Cite this Article Set citation alerts
    Lingyan Meng, Mengtao Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2[J]. Photonics Research, 2017, 5(6): 745 Copy Citation Text show less
    References

    [1] J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep., 4, 6346(2014).

    [2] A. Smolyanitsky, B. I. Yakobson, T. A. Wassenaar, E. Paulechka, K. Kroenlein. A MoS2-based capacitive displacement sensor for DNA sequencing. ACS Nano, 10, 9009-9016(2016).

    [3] J. S. Ponraj, Z. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. Mccoubrey, Y. Zhang, S. Li, H. Zhang, Q. Bao. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 27, 462001(2016).

    [4] R. He, J. Hua, A. Zhang, C. Wang, J. Peng, W. Chen, J. Zeng. Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution. Nano Lett., 17, 4311-4316(2017).

    [5] X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, M. Sun. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy, 5, 72-78(2017).

    [6] H. Wang, C. Zhang, W. Chan, S. Tiwari, F. Rana. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun., 6, 8831(2015).

    [7] T. Li, G. Galli. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C, 111, 16192-16196(2007).

    [8] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).

    [9] E. Cao, W. Lin, M. Sun, W. Liang, Y. Song. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics.

    [10] G. Vampa, B. G. Ghamsari, S. S. Mousavi, T. J. Hammond, A. Olivieri, E. Lisicka-Skrek, A. Y. Naumov, D. M. Villeneuve, A. Staudte, P. Berini, P. B. Corkum. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys., 13, 659-662(2017).

    [11] J. Li, Y. Zhang, S. Ding, R. Panneerselvam, Z. Tian. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev., 117, 5002-5069(2017).

    [12] C. Yan, X. Wang, T. V. Raziman, O. J. Martin. Twisting fluorescence through extrinsic chiral antennas. Nano Lett., 17, 2265-2272(2017).

    [13] K. Zhou, Y. Zhu, X. Yang, J. Zhou, C. Li. Demonstration of photoluminescence and metal-enhanced fluorescence of exfoliated MoS2. Chem. Phys. Chem., 13, 699-702(2012).

    [14] Z. Zhang, S. Sheng, R. Wang, M. Sun. Tip-enhanced Raman spectroscopy. Anal. Chem., 88, 9328-9346(2016).

    [15] Y. Fang, Z. Zhang, M. Sun. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. Rev. Sci. Instrum., 87, 033104(2016).

    [16] J. Zhong, X. Jin, L. Meng, X. Wang, H. Su, Z. Yang, C. T. Williams, B. Ren. Probing the electronic and catalytic properties of a bimetallic surface with 3  nm resolution. Nat. Nanotechnol., 12, 132-136(2017).

    [17] R. Zhang, Y. Zhang, Z. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. Yang, J. Hou. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498, 82-86(2013).

    [18] C. Muehlethaler, C. R. Considine, V. Menon, W. Lin, Y. H. Lee, J. R. Lombardi. Ultrahigh Raman enhancement on monolayer MoS2. ACS Photon., 3, 1164-1169(2016).

    [19] A. M. Alajlan, D. V. Voronine, A. M. Sinyukov, Z. Zhang, A. V. Sokolov, M. O. Scully. Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy. Appl. Phys. Lett., 109, 133106(2016).

    [20] Z. He, D. V. Voronine, A. M. Sinyukov, Z. N. Liege, B. Birmingham, A. V. Sokolov, Z. Zhang, M. O. Scully. Tip-enhanced Raman scattering on bulk MoS2 substrate. IEEE J. Sel. Top. Quantum Electron., 23, 4601006(2016).

    [21] Y. Zhang, D. V. Voronine, S. Qiu, S. Qiu, A. M. Sinyukov, M. Hamilton, A. V. Sokolov, Z. Zhang, M. O. Scully. Quantum limit in subnanometre-gap tip-enhanced nanoimaging of few-layer MoS2(2015).

    [22] K. C. J. Lee, Y. H. Chen, H. Y. Lin, C. C. Cheng, P. Y. Chen, T. Y. Wu, M. H. Shih, K. H. Wei, L. J. Li, C. W. Chang. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep., 5, 16374(2015).

    [23] Y. Wang, C. Cong, C. Qiu, T. Yu. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small, 9, 2857-2861(2013).

    [24] Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, J. Kim. Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 7, 11909-11914(2015).

    [25] R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, M. Steiner. Electroluminescence in single layer MoS2. Nano Lett., 13, 1416-1421(2012).

    [26] P. B. Johnson. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [27] Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van De Walle, N. V. Nguyen, Y. Zhang, L. Cao. Exciton-dominated dielectric function of atomically thin MoS2 films. Sci. Rep., 5, 16996(2015).

    [28] L. Novotny, B. Hecht, O. Keller. Principles of Nano-Optics(2012).

    [29] J. Dong, Z. Zhang, H. Zheng, M. Sun. Recent progress on plasmon-enhanced fluorescence. Nanophotonics, 4, 472-490(2015).

    [30] N. Chiang, N. Jiang, D. V. Chulhai, E. A. Pozzi, M. C. Hersam, L. Jensen, T. Seideman, R. P. Van Duyne. Molecular-resolution interrogation of a porphyrin monolayer by ultrahigh vacuum tip-enhanced Raman and fluorescence spectroscopy. Nano Lett., 15, 4114-4120(2015).

    [31] J. W. Liaw, J. H. Chen, C. S. Chen, M. K. Kuo. Purcell effect of nanoshell dimer on single molecule’s fluorescence. Opt. Express, 17, 13532-13540(2009).

    [32] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [33] S. Chen, Z. Yang, L. Meng, J. Li, C. Williams, Z. Tian. Electromagnetic enhancement in shell-isolated nanoparticle-enhanced Raman scattering from gold flat surfaces. J. Phys. Chem. C, 119, 5246-5251(2015).

    [34] P. Bharadwaj, P. Anger, L. Novotny. Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology, 18, 044017(2007).

    CLP Journals

    [1] Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization[J]. Photonics Research, 2020, 8(2): 103

    [2] Min Gao, Weimin Yang, Zhengying Wang, Shaowei Lin, Jinfeng Zhu, Zhilin Yang. Plasmonic resonance-linewidth shrinkage to boost biosensing[J]. Photonics Research, 2020, 8(7): 1226

    Lingyan Meng, Mengtao Sun. Tip-enhanced photoluminescence spectroscopy of monolayer MoS2[J]. Photonics Research, 2017, 5(6): 745
    Download Citation