• Photonics Research
  • Vol. 8, Issue 12, 1904 (2020)
Neetesh Singh1、2、*, Hamidu M. Mbonde3, Henry C. Frankis3, Erich Ippen2, Jonathan D. B. Bradley3、4, and Franz X. Kärtner1
Author Affiliations
  • 1Centre for Free Electron Laser Science (CFEL)-DESY and University of Hamburg, 22607 Hamburg, Germany
  • 2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 3Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
  • 4e-mail: jbradley@mcmaster.ca
  • show less
    DOI: 10.1364/PRJ.400057 Cite this Article Set citation alerts
    Neetesh Singh, Hamidu M. Mbonde, Henry C. Frankis, Erich Ippen, Jonathan D. B. Bradley, Franz X. Kärtner. Nonlinear silicon photonics on CMOS-compatible tellurium oxide[J]. Photonics Research, 2020, 8(12): 1904 Copy Citation Text show less
    References

    [1] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [2] A. J. Kenyon. Erbium in silicon. Semicond. Sci. Technol., 20, R65-R84(2005).

    [3] U. D. Dave, C. Ciret, S. P. Gorza, S. Combrie, A. D. Rossi, F. Raineri, G. Roelkens, B. Kuyken. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett., 40, 3584-3587(2015).

    [4] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [5] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [6] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [7] A. D. Bristow, N. Rotenber, H. M. van Driel. Two photon absorption and Kerr coefficients of silicon for 850–2200  nm. Appl. Phys. Lett., 90, 191104(2007).

    [8] N. Singh, M. Xing, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, Ch. Baiocco, B. P.-P. Kuo, S. Radic, E. P. Ippen, F. X. Kärtner, M. R. Watts. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06  μm to beyond 2.4  μm. Light Sci. Appl., 7, 17131(2018).

    [9] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 441, 960-963(2006).

    [10] N. Singh, M. Raval, A. Ruocco, M. R. Watts. Broadband 200  nm second harmonic generation in silicon in the telecom band. Light Sci. Appl., 9, 17(2020).

    [11] J. Leuthold. Nonlinear silicon photonics. Nat. photonics, 4, 535-544(2010).

    [12] B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express, 19, 20172-20181(2011).

    [13] M. Sheik-bahae, E. W. van Stryland. Optical nonlinearities in the transparency region of bulk semiconductor. Semiconduct. Semimetals, 58, 257-318(1998).

    [14] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. L. Davies, S. Madden, D. J. Moss, B. J. Eggleton. Mid infrared supercontinuum generation from 2 to 6  μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [15] N. Nader, A. Kowligy, J. Chiles, E. J. Stanton, H. Timmers, A. J. Lind, F. C. Cruz, D. M. B. Lesko, K. A. Briggman, S. W. Nam, S. A. Diddams, R. P. Mirlin. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 6, 1269-1276(2020).

    [16] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. V. Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, N. Picque. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 6, 6310(2015).

    [17] M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, T. J. Kippenberg. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

    [18] Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, A. L. Gaeta. Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. Opt. Lett., 43, 4627-4630(2018).

    [19] J. Chiles, N. Nadar, D. D. Hickstein, S. P. Yu, T. C. Briles, D. Carlson, H. Jung, J. M. Shainline, S. Diddams, S. B. Papp, S. W. Nam, R. P. Mirlin. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett., 43, 1527-1530(2018).

    [20] K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman. Thermal and Kerr properties of plasma deposited silicon nitride/silicon dioxide waveguides. Opt. Express, 16, 12987-12994(2008).

    [21] C. Lacava, S. Stankovic, A. Z. Khokar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J. Richardson, P. Petropoulos. Si-rich silicon nitride for nonlinear signal processing applications. Sci. Rep., 7, 22(2016).

    [22] D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photon. Res., 6, B50-B66(2018).

    [23] E. S. Hosseini, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adams, D. D. Coolbaugh, M. R. Watts. CMOS-compatible 75  mW erbium-doped distributed feedback laser. Opt. Lett., 39, 3106-3109(2014).

    [24] K. Shtyrkova, P. T. Callahan, N. Li, E. S. Magden, A. Ruocco, D. Vermeulen, F. X. Kartner, M. R. Watts, E. P. Ippen. Integrated CMOS-compatible Q-switched modelocked lasers at 1900  nm with an on-chip artificial saturable absorber. Opt. Express, 27, 3542-3556(2019).

    [25] N. Singh, E. Ippen, F. X. Kartner. Towards CW modelocked laser on chip—a large mode area and NLI for stretched pulse mode locking. Opt. Express, 28, 22562-22579(2020).

    [26] N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, M. R. Watts. Monolithically integrated erbium doped tunable laser on a CMOS-compatible silicon photonics platform. Opt. Express, 26, 16200-16211(2018).

    [27] E. S. Magden, N. Li, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, L. A. Kolodzieski. Monolithically-integrated distributed feedback laser compatible with CMOS processing. Opt. Express, 25, 18058-18065(2017).

    [28] M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, Y. Ohishi. Gain flattened tellurite based EDFA with a flat amplification bandwidth of 76  nm. IEEE Photon. Technol. Lett., 10, 1244-1246(1998).

    [29] A. Jha, S. Shaoxiong, L. H. Huang, P. Joshi. Spectroscopic properties of rare earth metal ion doped tellurium oxide glasses and fibres. J. Opt., 33, 157-170(2004).

    [30] S. Shen, A. Jha, X. Liu, M. Naftaly. Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc., 85, 1391-1395(2002).

    [31] S. H. Kim, T. Yoko, S. Sakka. Linear and nonlinear optical properties of TeO2 glass. J. Am. Ceram. Soc., 76, 2486-2490(1993).

    [32] S. H. Kim, T. Yoko. Nonlinear optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary glasses. J. Am. Ceram. Soc., 78, 1061-1065(1995).

    [33] S. J. Madden, K. T. Vu. Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics. Opt. Express, 17, 17645-17651(2009).

    [34] J. Rajan, O. Yasutake. Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2-ZnO-Nb2O5-MoO3 quaternary glass system. Appl. Phys. Lett., 90, 211104(2007).

    [35] R. Stegeman, C. Rivero, K. Richardson, G. Stegman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J. C. C. Mesjard. Raman gain measurements of thallium-tellurium oxide glasses. Opt. Express, 13, 1144-1149(2005).

    [36] L. Kassab, R. Pinto, R. Kobayashi, M. Piasecki, P. Bragiel, I. Kityk. Photoinduced second-order optical susceptibilities of Er2O3 doped TeO2–GeO2–PbO glasses. Opt. Commun., 274, 461-465(2007).

    [37] T. Cheng, Y. Xiao, S. Li, X. Yan, X. Zhang, T. Suzuki, Y. Ohishi. Highly efficient second-harmonic generation in a tellurite optical fiber. Opt. Lett., 44, 4686-4689(2019).

    [38] P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordiero, J. C. Knight, F. G. Omenetto. Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express, 16, 7161-7168(2008).

    [39] P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, D. Mathur. Femtosecond laser written channel waveguides in tellurite glass. Opt. Express, 14, 12145-12150(2006).

    [40] G. N. Conti, V. K. Tikhomirov, M. Bettinelli, S. Berneschi, M. Brenci, B. Chen, S. Pelli, A. Speghini, A. B. Seddon, G. C. Righini. Characterization of ion-exchanged waveguides in tungsten tellurite and zinc tellurite Er3+ doped glasses. Opt. Eng., 42, 2805-2811(2003).

    [41] G. N. Conti, S. Berneschi, M. Bettinelli, M. Brenci, B. Chen, S. Pelli, A. Speghini, G. Righini. Rare-earth doped tungsten tellurite glasses and waveguides: fabrication and characterization. J. Non Cryst. Solids, 345, 343-348(2004).

    [42] S. Berneschi, M. Brenci, G. Nunzi Conti, S. Pelli, G. C. Righini, I. Bányász, A. Watterich, N. Khanh, M. Fried, F. Pászti. Channel waveguide fabrication in Er3+ doped tellurite glass by ion beam irradiation. Proc. SPIE, 6475, 647509(2007).

    [43] H. C. Frankis, K. M. Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, J. D. B. Bradley. Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits. Opt. Express, 27, 12529-12540(2019).

    [44] A. Hartung, A. M. Heidt, H. Bartelt. Design of all-normal dispersion microstructured optical fibers for pulse preserving supercontinuum. Opt. Express, 19, 7742-7749(2011).

    [45] G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, A. Leitenstorfer. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photonics, 4, 33-36(2010).

    [46] M. Samoc, A. Samoc, B. L. Davies. Third harmonic autocorrelation and wave mixing in a thin film of poly(p-phenylenevinylene). Opt. Express, 11, 1787-1792(2003).

    [47] K. VU, S. Farahani, S. Madden. 980  nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band. Opt. Express, 23, 747-755(2015).

    [48] K. M. Kiani, H. C. Frankis, H. M. Mbonde, R. Mateman, A. Leinse, A. P. Knights, J. D. B. Bradley. Thulium-doped tellurium oxide waveguide amplifier with 7.6  dB net gain on a silicon nitride chip. Opt. Lett., 44, 5788-5791(2019).

    [49] H. C. Frankis, H. M. Mbonde, D. B. Bonneville, C. Zhang, R. Mateman, A. Leinse, J. D. B. Bradley. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers for 5  dB net gain. Photon. Res., 8, 127-134(2020).

    [50] L. Wang, W. Xie, D. V. Thourhout, Y. Zhang, H. Yu, S. Wang. Nonlinear silicon nitride waveguides based on a PECVD deposition platform. Opt. Express, 26, 9646-9654(2108).

    [51] S. S. Saseendran, T. D. Kongnyuy, B. Figey, F. Buja, B. Troia, S. Kerman, A. Marinins, R. Jansen, X. Rottenberg, D. S. Tezcan, P. Soussan. A 300  mm CMOS-compatible PECVD silicon nitride platform for integrated photonics with low loss and low process induced phase variation. Optical Fiber Communications Conference and Exhibition (OFC), M1C.4(2019).

    [52] S. J. Madden, K. T. Vu. High performance integrated optics with tellurite glasses: status and prospects. Int. J. Appl. Glass. Sci., 3, 289-298(2012).

    [53] G. P. Agrawal. Nonlinear Fiber Optics(2012).

    [54] G. H. C. New, J. F. Ward. Optical third-harmonic generation in gases. Phys. Rev. Lett., 19, 556-572(1967).

    [55] F. Kajzar, J. Messier. Third-harmonic generation in liquids. Phys. Rev. A, 32, 2352-2363(1985).

    [56] J. M. Gabriagues. Third harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber. Opt. Lett., 8, 183-185(1983).

    [57] T. Carmon, K. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys., 3, 430-435(2007).

    [58] B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, T. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 3, 206-210(2009).

    [59] J. S. Levy, M. A. Foster, A. L. Gaeta, M. Lipson. Harmonic generation in silicon nitride ring resonators. Opt. Express, 19, 11415-11421(2011).

    [60] J. C. Delagnes, L. Canioni. Third harmonic generation in periodically poled crystal. Proc. SPIE, 7917, 79171C(2011).

    [61] S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, R. M. Osgood. Optical third-harmonic generation in graphene. Phys. Rev. X, 3, 021014(2013).

    [62] J. B. Surya, X. Guo, C. L. Zou, H. X. Tang. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [63] S. Sederberg, C. J. Firby, . Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation. Opt. Express, 27, 4990-5004(2019).

    [64] R. Boyd. Nonlinear Optics(1992).

    [65] J. Thogersen, J. Mark. Third harmonic generation in standard and erbium-doped fibers. Opt. Commun., 110, 435-444(1994).

    [66] N. Singh, M. Xin, N. Li, D. Vermeulen, A. Ruocco, E. S. Magden, K. Shtyrkova, E. Ippen, F. X. Kaertner, M. R. Watts. Silicon photonics optical frequency synthesizer. Laser Photon. Rev., 14, 1900449(2019).

    [67] H. M. Mbonde, H. C. Frankis, J. D. B. Bradley. Enhanced nonlinearity and engineered anomalous dispersion in TeO2-coated Si3N4 waveguides. IEEE. Photon. J., 12, 2200210(2020).

    [68] N. Singh, D. Vermulen, A. Ruocco, N. Li, E. Ippen, F. X. Kartner, M. R. Watts. Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express, 27, 31698-31712(2019).

    Neetesh Singh, Hamidu M. Mbonde, Henry C. Frankis, Erich Ippen, Jonathan D. B. Bradley, Franz X. Kärtner. Nonlinear silicon photonics on CMOS-compatible tellurium oxide[J]. Photonics Research, 2020, 8(12): 1904
    Download Citation