• Infrared and Laser Engineering
  • Vol. 48, Issue 12, 1203004 (2019)
Cao Zhensong*, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, and Wang Yingjian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.1203004 Cite this Article
    Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004 Copy Citation Text show less
    References

    [1] Tai Hongda, Zhuang Zibo, Jiang Lihui, et al. Multi-point mobile measurement of atmospheric transmittance [J]. Optics and Precision Engineering, 2016, 24(8): 1894-1901. (in Chinese)

    [2] Gong Shaoqi, Sun Haibo, Wang Shaofeng, et al. Study on atmospheric transmittance of thermal infrared remote sensing(I): derivation of atmospheric transmittance model [J]. Infrared and Laser Engineering, 2015, 44(6): 1692-1698. (in Chinese)

    [3] Zang Shouhong, Bai Yunta, Ouyang Yi. Research on atmospheric transmittance measuring method [J]. Infrared, 2009, 30(3): 26-29. (in Chinese)

    [4] Goody R M, Yung Y L. Atmospheric Radiation: Theoretical Basis[M]. Oxford: Oxford University Press, 1989: 125-181.

    [5] Clough S A, Iacono M J. Line-by-line calculations of atmospheric fluxes and cooling rates: Part II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons [J]. Journal of Geophysics Research, 1995, 100(8): 16519-16535.

    [6] Witschas B. Light Scattering on Molecules in the Atmosphere[M]//Schumann U. Atmospheric Physics. Research Topics in Aerospace, Berlin: Springer, 2012.

    [7] Kokhanovsky A. Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere [M]. Berlin: Springer, 2008.

    [8] Zhan Jie, Guo Ruipeng, Huang Honghua, et al. Measurement of total atmospheric transmittance with stellar irradiance[J]. High Power Laser and Particle Beams, 2007, 19(11): 1761-1765. (in Chinese)

    [9] Adler-Golden S M, Slusser J R. Comparison of plotting methods for solar radiometer calibration[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(5): 935-938.

    [10] Selby J E A, McClatchey R A. Atmospheric transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 3 [S]. 1975.

    [11] Haught K M, Cordray D M. Long-path high-resolution atmospheric transmission measurements: comparison with LOWTRAN 3B predictions [J]. Applied Optics, 1978, 17(17): 2668-2670.

    [12] Kneizys, F X, Shettle E, Abreu L W, et al. User guide to LOWTRAN 7 [Z]. 1988.

    [13] Meng Fanbin, Zheng Li. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere [J]. Electro-Optic Technology Application, 2009, 24(3): 29-32.(in Chinese)

    [14] Berk A, Conforti P, Kennett R. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code [C]//SPIE, 2014, 9088: 10.1117/12.2050433.

    [15] Berk A, Conforti P, Hawes F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption with 0.1 cm-1 bins and pre-computed line tails[C]//SPIE, 2015, 9471: 10.1117/12.2177444.

    [16] Clough S A, Kneizys F X, Shettle E P, et al. Atmospheric radiance and transmittance: FASCOD2[C]//Proceedings of the Sixth Conference on Atmospheric Radiation, American Meteorological Society, 1986: 141-144.

    [17] Zhou Fengxian, Wang Luyi. Fast and accurate software for atmospheric tranmittance calculation-FASCODE [J]. Journal of Infrared Millimeter Waves, 1991, 10(5): 398-400. (in Chinese)

    [18] Isaacs R G, Wang W C, Worsham R D, et al. Multiple scattering LOWTRAN and FASCODE models [J]. Applied Optics, 1987, 26 (7): 1272-1281.

    [19] Clough S A, Shephard M W, Mlawer E J, et al. Atmospheric radiative transfer modeling: a summary of the AER codes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2): 233-244.

    [20] Alvarado M J, Payne V, Mlawer E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies [J]. Atmospheric Chemistry and Physics, 2013, 13(14): 6687-6711.

    [21] Chen Xiuhong, Wei Heli. Transplantation of LBLRTM from Workstation to PC [J]. Journal of atmospheric and Environmental Optics, 2007, 2(2): 99-103. (in Chinese)

    [22] Chen Xiuhong, Wei Heli, Xu Qingshan. Infrared atmospheric transmittance calculation model [J]. Infrared and Laser Engineering, 2011, 40(5): 811-816. (in Chinese)

    [23] Lamouroux J, Gamache R R, Laraia A L, et al. Semiclassical calculations of half-widths and line shifts for transitions in the 30012←00001 and 30013←00001 bands of CO2. III: Self collisions [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12): 1536-1546.

    [24] Wei H, Chen X, Rao R, et al. A Moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation [J]. Optics Express, 2007, 15(13): 8360-8370.

    [25] Chen X H, Wei H L, Wei Y L, et al. Comparison of infrared atmospheric transmittance calculated by CART software with measured values[J]. Laser & Infrared, 2009, 39(4): 403-406.

    [26] Wei Heli, Chen Xiuhong, Dai Congming. Combined atmospheric radiative transfer (CART) model and its applications [J]. Infrared and Laser Engineering, 2012, 41(12): 3360-3366. (in Chinese)

    [27] Dai Congming, Wei Heli, Chen Xiuhong. Validation of the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer(CART) code [J]. Infrared and Laser Engineering, 2013, 42(6): 1575-1581. (in Chinese)

    [28] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.

    [29] Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: homogeneous lambertian and anisotropic surfaces [J]. Applied Optics, 2007, 46(20):4455-4464.

    [30] Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research, 2008, 113, D13103: 10.1029/2008JD009944.

    [31] Emde C, Buras-Schnell R, Kylling A, et al. The libradtran software package for radiative transfer calculations (version 2.0.1) [J]. Geoscientific Model Development, 2016, 9(5): 1647-1672.

    [32] Li Shulei, Liu Lei, Gao Taichang. Introduction of atmospheric radiative transfer simulator software [J]. Journal of Atmospheric and Environmental Optics, 2016, 11(4): 241-248. (in Chinese)

    [33] Volz F E. Photometer mit Selen-photoelement zur spektralen Messung de Sonnenstrahlung und zer Bestimmung der Wallenlangenabhangigkeit der Dunsttrubun [J]. Arch Meteor Geophys Bioklim, 1959, B10: 100-131.

    [34] Mao Jietai, Li Jianguo. Visibility and telephotometer [J]. Scientia Atmospherica Sinica, 1984, 8(2): 170-177. (in Chinese)

    [35] Tan Kun, Wang Jie, Tu Chuanfang, et al. Multi-purpose solar photometer [J]. Acta Optica Sinica, 1991, 11(5): 448-452. (in Chinese)

    [36] Zhan Jie, Tan Kun, Shao Shisheng, et al. Portable autocontrol solar photometer[J]. Chinese Journal of Quantum Electronics, 2001, 18(6): 551-555. (in Chinese)

    [37] Huang Sheng, Jing Xu, Tan Fengfu, et al. Measurement and calibration methods for total atmospheric continuous transmittance [J]. Chinese Journal of Lasers, 2017, 44(7): 0710001. (in Chinese)

    [38] Zhan Jie, Guo Ruipeng, Rao Ruizhong. Measurement of atmospheric transmittance in the visible and near infrared [J]. Journal of Atmospheric and Environmental Optics, 2006, 1(3): 179-183. (in Chinese)

    [39] Wang Hao, He Feng, Jing Xu, et al. Study on measurement of total atmospheric transmittance in daytime and night observation stars [J]. Infrared and Laser Engineering, 2019, 48(3): 0311001. (in Chinese)

    [40] Roney P L, Reid F, Theriault J M. Transmission window near 2 400 cm-1: An experimental and modeling study [J]. Applied Optics, 1991, 30(15): 1995-2004.

    [41] Lü Weiyu, Zhu Wenyue, Li Zhichao, et al. Measurements of atmospheric transmittance based on fourier transform infrared spectrometer [J]. Journal of Atmospheric and Environmental Optics, 2010, 5(1): 26-31. (in Chinese)

    [42] Paine S, Blundell R, Cosmo Papa D, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths [J]. Publications of the Astronomical Society of the Pacific, 2000, 112: 108-118.

    [43] Weidmann D, Reburn W J, Smith K M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis [J]. Applied Optics, 2007, 46(29): 7162-7171.

    [44] Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column [J]. Applied Physics B, 2014, 114(3): 385-393.

    [45] Peyton B, DiNardo A, Cohen S, et al. An infrared heterodyne radiometer for high-resolution measurements of solar radiation and atmospheric transmission [J], IEEE Journal of Quantum Electronics, 1975, 11: 569-574.

    [46] Tan Tu, Cao Zhensong, Wang Guishi, et al. Study on the technolgy of the 4.4 μm mid-infrared laser heterodyne spectrum [J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1516-1519. (in Chinese)

    [47] Wu Qingchuan, Huang Yinbo, Tan Tu, et al. High-resolution atmospheric-transmission measurement using a laser heterodyne radiometer [J]. Spectroscopy and Spectral Analysis, 2017, 37(6): 1678-1682. (in Chinese)

    [48] Liu Junchi, Li Hongwen, Wang Jianli, et al. Measurement of mid-infrared total atmospheric transmittance and ite error analysis [J]. Optics and Precision Engineering, 2015, 23(6): 1547-1557. (in Chinese)

    [49] Zhao Zhijun, Xu Fangyu, Wei Chaoqun, et al. Study on measurement method for total infrared atmospheric transmittance [J]. Infrared Technology, 2018, 40(7): 718-722. (in Chinese)

    [50] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

    [51] Liu Dandan, Huang Yinbo, Dai Congming, et al. Effect of changes of HITRAN database on transmittance calculation in mid-infrared region along vertical uplink [J]. Infrared and Laser Engineering, 2013, 42(7): 1776-1782. (in Chinese)

    [52] Sun Mingguo, Ma Hongliang, Cao Zhensong, et al. Measurement and application of CO2 spectroscopic parameters near 2.0 μm [J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 2881-2886. (in Chinese)

    [53] Liu G L, Wang J, Tan Y, et al. Line positions and N2-induced line parameters of the 00°3-00°0 band of 14N216O by comb-assisted cavity ring-down spectroscopy [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 229: 17-22.

    [54] Ma H, Liu Q, Cao Z, et al. Temperature dependences for N2-and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 171: 50-56.

    [55] Richard C, Gordon I E, Rothman L S, et al. New section of the HITRAN database: Collision-induced absorption (CIA) [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113: 1276-1285.

    [56] Liu Kai, Wei Lixin, Chen Zhikun, et al. Radiosonde observations at the southwest continent and analysis of atmospheric vertical structure characteristics if the Antarctic [J]. Chinese Journal of Polar Research, 2019, 31(1): 13-24. (in Chinese)

    [57] Wang Yuxun, Wang Rui, Yan Wei, et al. Data simulation and parameter inversion based on microwave hyperspectral technology [J]. Journal of Microwaves, 2019, 35(2): 75-80. (in Chinese)

    [58] Tao Zongming, Shi Qibing, Xie Chenbo, et al. Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar [J]. Infrared and Laser Engineering, 2019, 48(S1): S106007. (in Chinese)

    [59] Ma Xiaomin, Tao Zongming, Zhang Lulu, et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar [J]. Acta Optica Sinica, 2018, 38(4): 0401005. (in Chinese)

    [60] Liu Zeyang, Li Xuebin, Sun Gang, et al. Analysis of seasonal change characteristics of aerosol optical depth in Delingha and Hefei [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3): 185-192. (in Chinese)

    [61] Huang Sheng. The design and related data analysis of solar spectral radiometer from visible to near infrared bands [D]. Changsha: University of Science and Technology of China, 2018. (in Chinese)

    [62] Shaw G E. Error analysis of multi-wavelength sun photometry [J]. Pure and Applied Geophysics, 1976, 114(1): 1-14.

    [63] Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer [J]. Journal of applied Meteorological Science, 2008, 19(3): 297-306. (in Chinese)

    [64] Zhang Junhua, Wang Meihua, Mao Jietai. Error analysis and correction for multi-wavelength Sun-photometer aerosol remote sensing [J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6): 855-859. (in Chinese)

    [65] Bruce C K, Zheng Q, Alexander F H G. Direct solar spectral irradiance and transmittance measurements from 350 to 2 500 nm [J]. Applied Optics, 2001, 40(21): 3483-3494.

    [66] Qie L L, Dai C M, Xu Q S, et al. Calibration of near-infrared absorption band for a sun-photometer [J]. Journal of Remote Sensing, 2012, 16(5): 928-938.

    Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004
    Download Citation