• High Power Laser and Particle Beams
  • Vol. 34, Issue 3, 031018 (2022)
Bowen Fu1、2, Qinnan Zhang1、2, Yong Tian1, and Jindong Tian1、2、*
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
  • 2Research Institute of Laser Processing Technology and Intelligent Manufacturing, Shenzhen 518107, China
  • show less
    DOI: 10.11884/HPLPB202234.210271 Cite this Article
    Bowen Fu, Qinnan Zhang, Yong Tian, Jindong Tian. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34(3): 031018 Copy Citation Text show less
    References

    [1] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 567-569(2005).

    [2] Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, solid state lasers[C]Proc of SPIE. 2012: 824102.

    [4] Zhang Bo, Wang Zhaorong, Brodbeck S, et al. Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity[J]. Light:Science & Applications, 3, 1-2(2014).

    [5] Knning T, Khler B, Wolf P, et al. Optical components f tailing beam properties of multikW diode lasers[C]Proc of SPIE. 2017, 100850G.

    [6] Hengesbach S, Krauch N, Holly C, et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Optics letters, 38, 3154-3155(2013).

    [7] Zhao Yue, Zhang Jinchuan, Zhou Yuhong, et al. External-cavity beam combining of 4-channel quantum cascade lasers[J]. Infrared Physics & Technology, 85, 52-55(2017).

    [8] Sun Fangyuan, Shu Shili, Hou Guanyu, et al. Efficiency and threshold characteristics of spectrally beam combined high-power diode lasers[J]. IEEE Journal of Quantum Electronics, 55, 1-7(2019).

    [9] Huang R K, Chann B, Glenn J D. Ultrahigh brightness wavelengthstabilized kWclass fiber coupled diode laser[C]Proc of SPIE. 2011: 791810.

    [10] Strohmaier S G, Erbert G, MeissnerSchenk A H, et al. kWclass diode laser bars[C]Proc of SPIE. 2017: 100860C.

    [11] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 24, 12064-12066(2016).

    [14] Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Optics Express, 26, 21675-21678(2018).

    [15] Wang Hanbin, Song Yinglin, Yang Yifng, et al. Simulation and experimental study of laser-induced thermal deformation of spectral beam combination grating[J]. Optics Express, 28, 33334(2020).

    [16] Tremain D E, Mei K K. Application of unimoment method to scattering from periodic dielectric structures[J]. Journal of the Optical Society of America, 68, 775-780(1978).

    [20] Tang Enling, Lin Xiaochu, Han Yafei, et al. Experimental research on thermal-dynamic damage effect of K9 optical lens irradiated by femtosecond laser[J]. International Journal of Applied Glass Science, 11, 277-284(2019).

    [21] Guan Kuiwen, Jiang Yanqi, Sun Changsen, et al. A two-layer model of laser interaction with skin: A photothermal effect analysis[J]. Optics & Laser Technology, 43, 425-429(2011).

    Bowen Fu, Qinnan Zhang, Yong Tian, Jindong Tian. Analysis of thermal effect of high-power semiconductor laser spectral combining grating[J]. High Power Laser and Particle Beams, 2022, 34(3): 031018
    Download Citation