• Advanced Photonics
  • Vol. 1, Issue 5, 056003 (2019)
Evgenii Narimanov*
Author Affiliations
  • Purdue University, School of Electrical Engineering, Birck Nanotechnology Center, West Lafayette, Indiana, United States
  • show less
    DOI: 10.1117/1.AP.1.5.056003 Cite this Article Set citation alerts
    Evgenii Narimanov. Resolution limit of label-free far-field microscopy[J]. Advanced Photonics, 2019, 1(5): 056003 Copy Citation Text show less
    References

    [1] E. Sakat et al. Near-field imaging of free carriers in ZnO nanowires with a scanning probe tip made of heavily doped Germanium. Phys. Rev. Appl., 8, 054042(2017).

    [2] B. Herman, K. Jacobson. Optical Microscopy for Biology(1990).

    [3] J. W. Goodman. Introduction to Fourier Optics(2004).

    [4] J.-L. Lagrange. Sur une Loi generale d’Optique(1803).

    [5] H. von Helmholtz. On the limits of the optical capacity of the microscope. Proc. Bristol Nat. Soc., 1, 435(1874).

    [6] E. K. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat., 9, 413-468(1873).

    [7] E. Abbe. A contribution to the theory of the microscope, and the nature of microscopic vision. Proc. Bristol Nat. Soc., 1, 200-261(1874).

    [8] B. Hecht et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys., 112, 7761-7774(2000).

    [9] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [10] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435-441(2008).

    [11] F. Balzarotti et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

    [12] M. J. Rust, M. Bates, X. Zhuang. Sub diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [13] E. Betzig et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science, 251, 1468-1470(1991).

    [14] E. T. F. Rogers et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).

    [15] G. H. Yuan, E. T. F. Rogers, N. I. Zheludev. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl., 6, e17036(2017).

    [16] S. Gazit et al. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express, 17, 23920-23946(2009).

    [17] A. Szameit et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater., 11, 455-459(2012).

    [18] P. Sidorenko et al. Sparsity-based super-resolved coherent diffraction imaging of one-dimensional objects. Nat. Commun., 6, 8209(2015).

    [19] F. M. Huang, N. I. Zheludev. Super-resolution without evanescent waves. Nano Lett., 9, 1249-1254(2009).

    [20] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423(1948).

    [21] M. C. André. Étude de la Diffraction dans les Intruments d’Optique; son Influence sur les Observations Astronomiques. Ann. de l’École Norm. Sup., 5, 275-354(1876).

    [22] L. Rayleigh. Investigations in optics, with special reference to the spectroscope. Philos. Mag. J. Sci., 8, 261-274(1879).

    [23] A. Sentenac, P. C. Chaumet, K. Belkebir. Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography. Phys. Rev. Lett., 97, 243901(2006).

    [24] S. Inampudi, N. Kuhta, V. A. Podolskiy. Interscale mixing microscopy: numerically stable imaging of wavelength-scale objects with sub-wavelength resolution and far field measurements. Opt. Express, 23, 2753-2763(2015).

    [25] C. M. Roberts et al. Interscale mixing microscopy: far-field imaging beyond the diffraction limit. Optica, 3, 803-808(2016).

    [26] F. Le Clerc, L. Collot, M. Gross. Numerical heterodyne holography with two-dimensional photodetector arrays. Opt. Lett., 25, 716-718(2000).

    [27] G. T. di Francia. Resolving power and information. J. Opt. Soc. Am., 45, 497-501(1955).

    [28] P. B. Fellgett, E. H. Linfoot. On the assessment of optical images. Philos. Trans. R. Soc. Ser. A, 247, 369-407(1955).

    [29] N. J. Bershad. Resolution, optical-channel capacity and information theory. J. Opt. Soc. Am., 59, 157-163(1969).

    [30] E. L. Kosarev. Shannons superresolution limit for signal recovery. Inverse Prob., 6, 55-76(1990).

    [31] B. T. Draine, P. J. Flatau. Discrete dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11, 1491-1499(1994).

    [32] W. C. Chew. Waves and Fields in Inhomogeneous Media(1995).

    [33] T. J. Cui et al. Study of resolution and super resolution in electromagnetic imaging for half-space problems. IEEE Trans. Antennas Propag., 52, 1398-1411(2004).

    [34] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [35] E. Narimanov. Hyperstructured illumination. ACS Photonics, 3, 1090-1094(2016).

    [36] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty. V: the discrete case. Bell Syst. Tech. J., 57, 1371-1430(1978).

    [37] H. J. Landau. On the eigenvalue behavior of certain convolution equations. Trans. Am. Math. Soc., 115, 242-256(1965).

    [38] D. Slepian, E. Sonnenblick. Eigenvalues associated with prolate spheroidal wave functions of zero order. Bell Syst. Tech. J., 44, 1745-1759(1965).

    CLP Journals

    [1] Chang Ling, Chonglei Zhang, Mingqun Wang, Fanfei Meng, Luping Du, Xiaocong Yuan. Fast structured illumination microscopy via deep learning[J]. Photonics Research, 2020, 8(8): 1350

    Evgenii Narimanov. Resolution limit of label-free far-field microscopy[J]. Advanced Photonics, 2019, 1(5): 056003
    Download Citation