• Spectroscopy and Spectral Analysis
  • Vol. 40, Issue 9, 2815 (2020)
LIU Yan-de, GAO Xue, JIANG Xiao-gang, GAO Hai-gen, LIN Xiao-dong, ZHANG Yu, and ZHENG Yi-lei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2020)09-2815-06 Cite this Article
    LIU Yan-de, GAO Xue, JIANG Xiao-gang, GAO Hai-gen, LIN Xiao-dong, ZHANG Yu, ZHENG Yi-lei. Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2815 Copy Citation Text show less
    References

    [1] Cialla D, Mrz A, Bhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends[J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27-54.

    [2] Zhang Y, Zhao S, Zheng J, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. TrAC Trends in Analytical Chemistry, 2017, 90: 1-13.

    [3] Craig A P, Franca A S, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety[J]. Annual Review of Food Science and Technology, 2013, 4(1): 369-380.

    [4] Zhu Q, Cao Y, Cao Y, et al. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements[J]. Analytical and Bioanalytical Chemistry, 2014, 406(7): 1877-1884.

    [5] Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

    [6] Jin Y, Ma P, Liang F, et al. Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering[J]. Analytical Methods, 2013, 5(20): 5609-5614.

    [7] Liu C, Zhang X, Li L, et al. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2015, 140(13): 4668-4675.

    [8] Wang W, Xu M, Guo Q, et al. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy[J]. RSC Advances, 2015, 5(59): 47640-47646.

    [9] Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 73-82.

    [10] Cho I H, Bhandari P, Patel P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157∶H7 in ground beef[J]. Biosensors and Bioelectronics, 2015, 64: 171-176.

    [11] Li M, Banerjee S R, Zheng C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chemical Science, 2016, 7(11): 6779-6785.

    [12] Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast[J]. Wound Repair and Regeneration, 2005, 13(1): 7-12.

    [13] Goodson W H, Hunt T K. Wound healing and the diabetic patient[J]. Surgery, Gynecology & Obstetrics, 1979, 149(4): 600-608.

    [14] Greenhalgh D G. Wound healing and diabetes mellitus[J]. Clinics in Plastic Surgery, 2003, 30(1): 37-45.

    [15] Franzén L E, Roberg K. Impaired connective tissue repair in streptozotocin-induced diabetes shows ultrastructural signs of impaired contraction[J]. Journal of Surgical Research, 1995, 58(4): 407-414.

    [16] Esmaeelinejad M, Bayat M, Darbandi H, et al. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums[J]. Lasers in Medical Science, 2014, 29(1): 121-129.

    [17] Grossman N, Schneid N, Reuveni H, et al. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species[J]. Lasers in Surgery and Medicine, 1998, 22(4): 212-218.

    [18] Almeida-Lopes L, Rigau J, Zngaro R A, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence[J]. Lasers in Surgery and Medicine, 2001, 29(2): 179-184.

    [19] Hu W P, Wang J J, Yu C L, et al. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria[J]. Journal of Investigative Dermatology, 2007, 127(8): 2048-2057.

    [20] Igarashi A, Okochi H, Bradham D M, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair[J]. Molecular Biology of the Cell, 1993, 4(6): 637-645.

    [21] Vogt A, Rancan F, Ahlberg S, et al. Interaction of dermatologically relevant nanoparticles with skin cells and skin[J]. Beilstein Journal of Nanotechnology, 2014, 5: 2363-2373.

    [22] Kaminaka S, Ito T, Yamazaki H, et al. Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis[J]. Journal of Raman Spectroscopy, 2002, 33(7): 498-502.

    [23] Li D, Wang Y X, Jiao Q, et al. Effects of low intensity He-Ne laser irradiation on mouse skin fbroblasts, thymocytes and bone marrow cells[J]. Chinese Journal of Laser Medicine & Surgery, 2005, 14(4): 245-248.

    [24] Wu D. Primary study of dot matrix laser assisted autogenous fibroblasts transdermal delivery [J]. Chinese Journal of Laser Medicine & Surgery, 2016, 15(5): 6-9.

    [25] Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

    [26] Piredda P, Berning M, Boukamp P, et al. Subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes[J]. Analytical Chemistry, 2015, 87(13): 6778-6785.

    [27] Li L, Liu S, Chen Z, et al. Remote detection of the surface-enhanced Raman spectrum with the optical fiber nanoprobe[J]. Optics & Spectroscopy, 2014, 116(4): 575-578.

    [28] Pikov V, Siegel P H. Thermal monitoring: Raman spectrometer system for remote measurement of cellular temperature on a microscopic scale[J]. IEEE Engineering in Medicine and Biology Magazine, 2010, 29(1): 63-71.

    [29] Chen Z, Dai Z, Chen N, et al. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection[J]. IEEE Photonics Technology Letters, 2014, 26(8): 777-780.

    [30] Polwart E, Keir R L, Davidson C M, et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 2000, 54(4): 522-527.

    [31] Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402.

    [32] Daniels J K, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering[J]. The Journal of Physical Chemistry B, 2005, 109(38): 17936-17942.

    [33] Yonzon C R, Haynes C L, Zhang X, et al. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.

    [34] McNichols R J, Cote G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.

    [35] Yan B, Li B, Wen Z, et al. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors[J]. BMC Cancer, 2015, 15(1): 650.

    [36] Tang H W, Yang X B, Kirkham J, et al. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering[J]. Analytical Chemistry, 2007, 79(10): 3646-3653.

    [37] Cheng W T, Liu M T, Liu H N, et al. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma[J]. Microscopy Research and Technique, 2005, 68(2): 75-79.

    [38] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

    [39] Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

    [40] Sigurdsson S, Philipsen P A, Hansen L K, et al. Detection of skin cancer by classification of Raman spectra[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10): 1784-1793.

    [41] Bodanese B, Silveira L, Jr, Albertini R, et al. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models[J]. Photomedicine and Laser Surgery, 2010, 28(S1): S119-S127.

    [42] Barry B W, Edwards H G M, Williams A C. Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands[J]. Journal of Raman Spectroscopy, 1992, 23(11): 641-645.

    [43] Caspers P J, Bruining H A, Puppels G J, et al. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles[J]. Journal of Investigative Dermatology, 2001, 116(3): 434-442.

    [44] Tang H, Yao H, Wang G, et al. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers[J]. Optics Express, 2007, 15(20): 12708-12716.

    CLP Journals

    [1] WANG Qiu, LI Bin, HAN Zhao-yang, ZHAN Chao-hui, LIAO Jun, LIU Yan-de. Research on Anthracnose Grade of Camellia Oleifera Based on the Combined LIBS and Fourier Transform NIR Technology[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1450

    LIU Yan-de, GAO Xue, JIANG Xiao-gang, GAO Hai-gen, LIN Xiao-dong, ZHANG Yu, ZHENG Yi-lei. Detection of Anthracnose in Camellia Oleifera Based on Laser-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2815
    Download Citation