• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 4, 332 (2022)
HU Fangfang*, ZENG Chao, ZHU Gang, and LI Shiling
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2020208 Cite this Article
    HU Fangfang, ZENG Chao, ZHU Gang, LI Shiling. Trajectory tracking of non-diagonal unmanned underactuated surface vessel with position and yaw angle constraints[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(4): 332 Copy Citation Text show less
    References

    [1] BIBULI M, BRUZZONE G, CACCIA M, et al. Path-following algorithms and experiments for an unmanned surface vehicle[J].Journal of Field Robotics, 2009,26(8):669-688.

    [2] SONNENBURG C R,WOOLSEY C A. Modeling, identification, and control of an unmanned surface vehicle[J]. Journal of Field Robotics, 2013,30(3):371-398.

    [4] JIANG Zhongping. Global tracking control of underactuated ships by Lyapunov's direct method[J]. Automatica, 2002, 38(2):301-309.

    [5] DO K D, JIANG Z P, PAN J, et al. A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle[J]. Automatica, 2004,40(1):117-124.

    [6] DO K D, PAN J. Control of ships and underwater vehicles: design for underactuated and nonlinear marine systems[M]. USA:Springer Science and Business Media, 2009.

    [7] CHWA D. Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method[J]. IEEE Transactions on Control Systems Technology, 2010,19(6):1357-1370.

    [8] YU R, ZHU Q, XIA G, et al. Sliding mode tracking control of an underactuated surface vessel[J]. IET Control Theory and Applications, 2012,6(3):461-466.

    [9] XU J, WANG M, QIAO L. Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles[J]. Ocean Engineering, 2015(105): 54-63.

    [10] KHOOBAN M H, VAFAMAND N, DRAGI E T, et al. Polynomial fuzzy model-based approach for underactuated surface vessels[J].IET Control Theory and Applications, 2018,12(7):914-921.

    [12] XIAO B, YANG X, HUO X. A novel disturbance estimation scheme for formation control of ocean surface vessels[J]. IEEE Transactions on Industrial Electronics, 2016,64(6):4994-5003.

    [14] SERRANO M E, SCAGLIA G J E, GODOY S A, et al. Trajectory tracking of underactuated surface vessels: a linear algebra approach[J]. IEEE Transactions on Control Systems Technology, 2013,22(3):1103-1111.

    [15] DO K D. Practical control of underactuated ships[J]. Ocean Engineering, 2010,37(13):1111-1119.

    [16] Z H A N G Q i a n g , Z H U G u i b i n g , H U X i n , e t a l . Adaptive neural network auto-berthing control of marine ships[J]. Ocean Engineering, 2019(177):40-48.

    [17] REN B,GE S S,TEE K P,et al. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function[J].IEEE Transactions on Neural Networks, 2010,21(8):1339-1345.

    [18] CHEN L, CUI R, YANG C, et al. Adaptive neural network control of Underactuated Surface Vessels with guaranteed transient performance:theory and experimental results[J]. IEEE Transactions on Industrial Electronics, 2010,67(5):4024-4035.

    [19] ZHAO Z, HE W, GE S S. Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints[J]. IEEE Transactions on Control Systems Technology, 2013,22(4):1536-1543.

    HU Fangfang, ZENG Chao, ZHU Gang, LI Shiling. Trajectory tracking of non-diagonal unmanned underactuated surface vessel with position and yaw angle constraints[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(4): 332
    Download Citation