• Infrared and Laser Engineering
  • Vol. 44, Issue 11, 3191 (2015)
Li Shilong1、2、*, Shi Feng1、2, Zhang Taimin1、2, Liu Zhaolu1、2, Zhang Fan1、2, Li Dan1、2, and Ren Zhaoyu3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    Li Shilong, Shi Feng, Zhang Taimin, Liu Zhaolu, Zhang Fan, Li Dan, Ren Zhaoyu. Band gap design of graphene photocathode[J]. Infrared and Laser Engineering, 2015, 44(11): 3191 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [2] Xie Shiwei, Xiao Xiao, Tan Jianjun, et al. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1): 47-53. (in chinese)

    [3] Gerasimos Konstantatos, Michela Badioli, Louis Gaudreau, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotech, 2012, 7: 363-368.

    [4] Liu Linsheng, Liu Su, Wang Wenxin, et al. Optical properties and material growth of GaAs(110) quantum wells[J]. Optics and Precision Engineering, 2007, 15(5): 678-683. (in Chinese)

    [5] Zhang Liandong, Feng Liu, Liu Hui, et al. Characteristic of surface barrier of epuably-doped GaAs photocathode[J]. Infrared and Laser Engineering, 2013, 42(8): 2181-2185. (in Chinese)

    [6] Qiao Jianliang, Chang Benkang, Qian Yunsheng, et al. Study of spectral response characteristics of negative electron affinity GaN photocathode[J]. Acta Physica Sinica, 2010, 59(5): 3577-3582. (in Chinese)

    [7] Martins T B, Miwa R H, da Silva A J R, et al. Electronic and transport properties of boron-doped graphene nanoribbons[J]. Physical Review Letters, 2007, 98(19):196803.

    [8] Yu S S, Zheng W T, Wen Q B, et al. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges[J]. Carbon, 2008, 46(3): 537-543.

    [9] Wehling T O, Novoselov K S, Morozov S V, et al. Molecular doping of graphene[J]. Nano Letters, 2007, 8(1): 173-177.

    [10] Ci L, Song L, Jin C, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nat Mater, 2010, 9(5): 430-435.

    [11] Shi Yanli, Li Fan, Zhao Lusheng, et al. Photoelectric properties of InAs/GaSb type-Ⅱ superlattices[J]. Infrared and Laser Engineering, 2011, 40(6): 981-985. (in Chinese)

    [12] Lu Huimin, Chen Genxiang. Influence of well width and barrier thickness on optoelectronic properties of InGaN/GaN multiple quantum well[J]. Infrared and Laser Engineering, 2011, 40(4): 696-700. (in Chinese)

    [13] Kronig de L R, Penney W G. Quantum mechanics of electrons in crystal lattices[J]. Proceedings of the Royal Society of London, Series A, 1931, 130(814): 499-513.

    [14] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.

    [15] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.

    [16] Lee J H, Grossman J C. Energy gap of Kronig-Penney-type hydrogenated graphene superlattices[J]. Physical Review B, 2011, 84(11): 113413.

    Li Shilong, Shi Feng, Zhang Taimin, Liu Zhaolu, Zhang Fan, Li Dan, Ren Zhaoyu. Band gap design of graphene photocathode[J]. Infrared and Laser Engineering, 2015, 44(11): 3191
    Download Citation