• Photonics Research
  • Vol. 9, Issue 5, B168 (2021)
Zafran Hussain Shah1, Marcel Müller2, Tung-Cheng Wang2, Philip Maurice Scheidig1, Axel Schneider1, Mark Schüttpelz2, Thomas Huser2、3、*, and Wolfram Schenck1、4、*
Author Affiliations
  • 1Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
  • 2Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
  • 3e-mail: thomas.huser@physik.uni-bielefeld.de
  • 4e-mail: wolfram.schenck@fh-bielefeld.de
  • show less
    DOI: 10.1364/PRJ.416437 Cite this Article Set citation alerts
    Zafran Hussain Shah, Marcel Müller, Tung-Cheng Wang, Philip Maurice Scheidig, Axel Schneider, Mark Schüttpelz, Thomas Huser, Wolfram Schenck. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 2021, 9(5): B168 Copy Citation Text show less
    References

    [1] L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, G. P. Drummen. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72-84(2019).

    [2] J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, L. Schermelleh. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc., 12, 988-1010(2017).

    [3] R. Heintzmann, T. Huser. Super-resolution structured illumination microscopy. Chem. Rev., 117, 13890-13908(2017).

    [4] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [5] L. M. Hirvonen, K. Wicker, O. Mandula, R. Heintzmann. Structured illumination microscopy of a living cell. Eur. Biophys. J., 38, 807-812(2009).

    [6] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. Gustafsson. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [7] L. Shao, P. Kner, E. H. Rego, M. G. Gustafsson. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).

    [8] L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell, 151, 1370-1385(2012).

    [9] R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, M. G. Gustafsson. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. USA, 109, 5311-5315(2012).

    [10] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [11] A. Markwirth, M. Lachetta, V. Mönkemöller, R. Heintzmann, W. Hübner, T. Huser, M. Müller. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 10, 4315(2019).

    [12] A. Sandmeyer, M. Lachetta, H. Sandmeyer, W. Hübner, T. Huser, M. Müller. DMD-based super-resolution structured illumination microscopy visualizes live cell dynamics at high speed and low cost(2019).

    [13] M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [14] M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, T. Huser. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).

    [15] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 22, 50-63(2016).

    [16] P. Křžek, T. Lukeš, M. Ovesný, K. Fliegel, G. M. Hagen. SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy. Bioinformatics, 32, 318-320(2016).

    [17] K. Wicker, O. Mandula, G. Best, R. Fiolka, R. Heintzmann. Phase optimisation for structured illumination microscopy. Opt. Express, 21, 2032-2049(2013).

    [18] J. Fan, X. Huang, L. Li, S. Tan, L. Chen. A protocol for structured illumination microscopy with minimal reconstruction artifacts. Biophys. Rep., 5, 80-90(2019).

    [19] D. P. Hoffman, E. Betzig. Tiled reconstruction improves structured illumination microscopy(2020).

    [20] L. Jin, B. Liu, F. Zhao, S. Hahn, B. Dong, R. Song, T. C. Elston, Y. Xu, K. M. Hahn. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat. Commun., 11, 1934(2020).

    [21] C. N. Christensen, E. N. Ward, P. Lio, C. F. Kaminski. ML-SIM: a deep neural network for reconstruction of structured illumination microscopy images(2020).

    [22] C. Ling, C. Zhang, M. Wang, F. Meng, L. Du, X. Yuan. Fast structured illumination microscopy via deep learning. Photon. Res., 8, 1350-1359(2020).

    [23] M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, E. W. Myers. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods, 15, 1090-1097(2018).

    [24] X. Mao, C. Shen, Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Advances in Neural Information Processing Systems, 2802-2810(2016).

    [25] D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, M. Unser. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods, 12, 717-724(2015).

    [26] T. Novák, T. Gajdos, J. Sinkó, G. Szabó, M. Erdélyi. TestSTORM: versatile simulator software for multimodal super-resolution localization fluorescence microscopy. Sci. Rep., 7, 951(2017).

    [27] B. Lim, S. Son, H. Kim, S. Nah, K. Lee. Enhanced deep residual networks for single image super-resolution. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1132-1140(2017).

    [28] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu. Image super-resolution using very deep residual channel attention networks. European Conference on Computer Vision (ECCV), 286-301(2018).

    [29] C. Karras, M. Smedh, R. Förster, H. Deschout, J. Fernandez-Rodriguez, R. Heintzmann. Successful optimization of reconstruction parameters in structured illumination microscopy–a practical guide. Opt. Commun., 436, 69-75(2019).

    [30] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation(2015).

    [31] J. F. Abascal, S. Bussod, N. Ducros, S. Si-Mohamed, P. Douek, C. Chappard, F. Peyrin. A residual U-Net network with image prior for 3D image denoising(2020).

    [32] A. Hore, D. Ziou. Image quality metrics: PSNR vs. SSIM. 20th International Conference on Pattern Recognition, 2366-2369(2010).

    [33] L. Torrey, J. Shavlik. Transfer learning. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, 242-264(2010).

    [34] J. Howard, S. Ruder. Universal language model fine-tuning for text classification. 56th Annual Meeting of the Association for Computational Linguistics, 328-339(2018).

    [35] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16, 2080-2095(2007).

    [36] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, T. Aila. Noise2Noise: learning image restoration without clean data. 35th International Conference on Machine Learning, 2965-2974(2018).

    [37] J.-Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. IEEE International Conference on Computer Vision, 2223-2232(2017).

    [38] M. Van Heel, M. Schatz. Fourier shell correlation threshold criteria. J. Struct. Biol., 151, 250-262(2005).

    [39] R. P. Nieuwenhuizen, K. A. Lidke, M. Bates, D. L. Puig, D. Grünwald, S. Stallinga, B. Rieger. Measuring image resolution in optical nanoscopy. Nat. Methods, 10, 557-562(2013).

    [40] A. C. Descloux, K. S. Grussmayer, A. Radenovic. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods, 16, 918-924(2019).

    [41] R. Van den Eynde, A. Sandmeyer, W. Vandenberg, S. Duwé, W. Hübner, T. Huser, P. Dedecker, M. Müller. Quantitative comparison of camera technologies for cost-effective super-resolution optical fluctuation imaging (SOFI). J. Phys. Photon., 1, 044001(2019).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Zafran Hussain Shah, Marcel Müller, Tung-Cheng Wang, Philip Maurice Scheidig, Axel Schneider, Mark Schüttpelz, Thomas Huser, Wolfram Schenck. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 2021, 9(5): B168
    Download Citation