• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 5, 525 (2016)
LIU Jing1、2、*, XIAO Ming-Fei3, SHEN Jing-Ling2, ZHANG Bo2, ZHANG Wei3, and ZHANG Cun-Lin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.05.003 Cite this Article
    LIU Jing, XIAO Ming-Fei, SHEN Jing-Ling, ZHANG Bo, ZHANG Wei, ZHANG Cun-Lin. Broadband spectroscopy of polymer waveguide and its sensing applications in the THz region[J]. Journal of Infrared and Millimeter Waves, 2016, 35(5): 525 Copy Citation Text show less
    References

    [1] Atakaramians S, Afshar Vahid S, Monro T, et al. Terahertz dielectric waveguides[J]. Advances in Optics & Photonics, 2013, 5(2):169-215.

    [2] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses.[J]. Optics Letters, 2001, 26(11):846-8.

    [3] Zhan H, Mendis R, Mittleman D M. Characterization of the terahertz near-field output of parallel-plate waveguides[J]. Journal of the Optical Society of America B, 2011, 28(3):558-566.

    [4] Gallot G, Jamison S P, Mcgowan R W, et al. Terahertz waveguides[J]. Journal of the Optical Society of America B, 2000, 17(5):851-863.

    [5] Setti V, Vincetti L, Argyros A. Flexible tube lattice fibers for terahertz applications.[J]. Optics Express, 2013, 21(3):3388-3399.

    [6] Bao H, Nielsen K, Rasmussen H K. Fabrication and characterization of porous-core honeycomb bandgap THz fibers.[J]. Optics Express, 2012, 20(28):29507-17.

    [7] Lu J Y, Yu C P, Chang H C, et al. Terahertz air-core microstructure fiber[J]. Applied Physics Letters, 2008, 92(6):064105 - 064105-3.

    [8] Andrews S R. Microstructured terahertz waveguides[J]. Journal of Physics D Applied Physics, 2014, 47(37).

    [9] Bao H, Nielsen K, Rasmussen H K, et al. Design and optimization of mechanically down-doped terahertz fiber directional couplers.[J]. Optics Express, 2014, 22(8):9486-9497.

    [10] Skorobogatiy M, Dupuis A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance Applied physics letters, 2007, 90(11): 113514.

    [11] Yu R J, Zhang B, Zhang Y Q, et al. Proposal for Ultralow Loss Hollow-Core Plastic Bragg Fiber With Cobweb-Structured Cladding for Terahertz Waveguiding[J]. IEEE Photonics Technology Letters, 2007, 19(12):910-912.

    [12] Wu Y, Yao B, Zhang A, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5):1235-7.

    [13] Lai C H, You B, Lu J Y, et al. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding.[J]. Optics Express, 2010, 18(1):309-22.

    [14] Bao H, Nielsen K, Bang O, et al. Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding.[J]. Scientific Reports, 2015, 5:7620-7620.

    [15] Nielsen K, Rasmussen H K. Bendable, low-loss Topas fibers for the terahertz frequency range.[J]. Optics Express, 2009, 17(10):8592-601.

    [16] Liu J, Xiao M, Shen J, et al. Flexible PMMA pipe for terahertz propagation[C]. Photonics Asia. International Society for Optics and Photonics, Beijing, 2012: 85620R-85620R-7.

    [17] Xiao M, Liu J, Zhang W, et al. THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique[J]. Optics Communications, 2013, 298:101-105.

    [18] Xiao M, Liu J, Zhang W, et al. Self-supporting polymer pipes for low loss single-mode THz transmission.[J]. Optics Express, 2013, 21(17):19808-19815.

    [19] You B, Lu J Y, Yu C P, et al. Terahertz refractive index sensors using dielectric pipe waveguides[J]. Optics Express, 2012, 20(6):5858-66.

    [20] Centini M, Sibilia C, Scalora M, et al. Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions.[J]. Physical Review E, 1999, 60(4):4891.

    LIU Jing, XIAO Ming-Fei, SHEN Jing-Ling, ZHANG Bo, ZHANG Wei, ZHANG Cun-Lin. Broadband spectroscopy of polymer waveguide and its sensing applications in the THz region[J]. Journal of Infrared and Millimeter Waves, 2016, 35(5): 525
    Download Citation