• Chinese Journal of Lasers
  • Vol. 48, Issue 18, 1802014 (2021)
Changfu Li1、*, Haoxian Ren1, Jiaqi Bu1, Xiangming Wang2, and guang Yang1
Author Affiliations
  • 1Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
  • 2Shenyang Aircraft Design Institute, Shenyang, Liaoning 110035, China
  • show less
    DOI: 10.3788/CJL202148.1802014 Cite this Article Set citation alerts
    Changfu Li, Haoxian Ren, Jiaqi Bu, Xiangming Wang, guang Yang. Study on Microstructures and Properties of Additive Manufactured Ti-6Al-4V Alloy with Boron[J]. Chinese Journal of Lasers, 2021, 48(18): 1802014 Copy Citation Text show less
    References

    [1] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [2] Huang L J, Geng L. Strengthening and toughening mechanisms of the second phase in titanium alloys and titanium matrix composites[J]. Materials China, 3, 215-222(2019).

    [3] Huo H, Liang Z Y, Zhang A F et al. Anisotropy of mechanical properties of laser-cladding-deposited TC4 titanium alloy containning boron[J]. Chinese Journal of Lasers, 46, 1202008(2019).

    [4] Tjong S C, Mai Y W. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 68, 583-601(2008).

    [5] Okulov I V, Kühn U, Marr T et al. Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys[J]. Applied Physics Letters, 104, 071905(2014).

    [6] Han J H, Kim K B, Yi S et al. Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity[J]. Applied Physics Letters, 93, 141901(2008).

    [7] Yang D K, Hodgson P D, Wen C E. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J]. Scripta Materialia, 63, 941-944(2010).

    [8] Yin W H, Xu F, Ertorer O et al. Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates[J]. Acta Materialia, 61, 3781-3798(2013).

    [9] Long Y, Wang T, Zhang H Y et al. Enhanced ductility in a bimodal ultrafine-grained Ti-6Al-4V alloy fabricated by high energy ball milling and spark plasma sintering[J]. Materials Science and Engineering: A, 608, 82-89(2014).

    [10] Qi Z J, Zhang X X, Wang Y Y et al. Effect of B on microstructure and tensile properties of laser additive manufactured TC4 alloy[J]. Chinese Journal of Lasers, 47, 0602002(2020).

    [11] Zhang L C, Das J, Lu H B et al. High strength Ti-Fe-Sn ultrafine composites with large plasticity[J]. Scripta Materialia, 57, 101-104(2007).

    [12] Meng Y, Huang L J, Zhang M J et al. Effect of boron on the microstructure and tensile properties of Ti-1023 alloy[J]. Titanium Industry Progress, 33, 26-30(2016).

    [13] Kühn U, Mattern N, Gebert A et al. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity[J]. Journal of Applied Physics, 98, 054307(2005).

    [14] Zhang L C, Lu H B, Mickel C et al. Ductile ultrafine-grained Ti-based alloys with high yield strength[J]. Applied Physics Letters, 91, 051906(2007).

    [15] Huang L Q, Wang L H, Qian M et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires[J]. Scripta Materialia, 141, 133-137(2017).

    [16] Jiao Y, Huang L J, Duan T B et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Scientific Reports, 6, 32991(2016).

    [17] Jiao Y, Huang L J, Wang S et al. Effects of first-scale TiBw on secondary-scale Ti5Si3 characteristics and mechanical properties of in situ (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Journal of Alloys and Compounds, 704, 269-281(2017).

    [18] Lü Z P, Jiang S H, He J Y et al. Second phase strengthening in advanced metal materials[J]. Acta Materialia Sinica, 10, 1183-1198(2016).

    [19] Huang L Q, Qian M, Liu Z M et al. In situ preparation of TiB nanowires for high-performance Ti metal matrix nanocomposites[J]. Journal of Alloys and Compounds, 735, 2640-2645(2018).

    [20] Hu Y B, Zhao B, Ning F D et al. In-situ ultrafine three-dimensional quasi-continuous network microstructural TiB reinforced titanium matrix composites fabrication using laser engineered net shaping[J]. Materials Letters, 195, 116-119(2017).

    [21] Hu Y B, Cong W L, Wang X L et al. Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening[J]. Composites Part B, 133, 91-100(2018).

    [22] Sun S C, Tian Y J, Hu C et al. Study on strengthening effect of TiBw on matrix in high temperature titanium matrix composites[J]. Titanium Industry Progress, 37, 15-19(2020).

    [23] Martina F, Colegrove P A, Williams S W et al. Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A, 46, 6103-6118(2015).

    [24] Bermingham M J, StJohn D H, Krynen J et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 168, 261-274(2019).

    [25] de Formanoir C, Martin G, Prima F et al. Micromechanical behavior and thermal stability of a dual-phase α+α' titanium alloy produced by additive manufacturing[J]. Acta Materialia, 162, 149-162(2019).

    [26] Xia M J, Liu A H, Hou Z W et al. Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in situ reinforced (TiB+TiC)/Ti composite[J]. Journal of Alloys and Compounds, 728, 436-444(2017).

    [27] Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy[J]. Acta Materialia, 169, 45-59(2019).

    [28] Attar H, Löber L, Funk A et al. Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting[J]. Materials Science and Engineering: A, 625, 350-356(2015).

    [29] Wang W, Wang D, Li C F et al. Effect of post heat treatment on microstructure and mechanical properties of Ti-6Al-4V jointing parts proceeded by laser additive manufacturing[J]. Materials Science and Engineering: A, 788, 139544(2020).

    [30] Li X D, Li C F, Liu Y M et al. Fracture behavior under tensile loading of Ti-6Al-4V alloy manufactured by selective laser melting processing[J]. Chinese Journal of Rare Metals, 45, 279-287(2021).

    [31] Zhao Z, Chen J, Tan H et al. Microstructure and mechanical properties of laser repaired TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 46, 1792-1797(2017).

    [32] Yang G, Wang B, Qin L Y et al. Microstructure and properties of TC4 titanium alloy by laser deposition and wire & arc additive manufacturing[J]. Chinese Journal of Rare Metals, 42, 903-908(2018).

    [33] Galarraga H, Warren R J, Lados D A et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Materials Science and Engineering: A, 685, 417-428(2017).

    [34] Li W, Yang Y, Liu J et al. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2in-situ metal matrix composites prepared via selective laser melting[J]. Acta Materialia, 136, 90-104(2017).

    [35] Yang C, Jiang H, Hu D et al. Effect of boron concentration on phase transformation texture in as-solidified Ti44Al8NbxB[J]. Scripta Materialia, 67, 85-88(2012).

    [36] Åkerfeldt P, Antti M L, Pederson R. Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V[J]. Materials Science and Engineering: A, 674, 428-437(2016).

    [37] Zhao H, Ho A, Davis A et al. Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V[J]. Materials Characterization, 147, 131-145(2019).

    [38] Panda K B, Ravi Chandran K S. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties[J]. Metallurgical and Materials Transactions A, 34, 1371-1385(2003).

    [39] Xu W, Lui E W, Pateras A et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance[J]. Acta Materialia, 125, 390-400(2017).

    [40] Mereddy S, Bermingham M J, Kent D et al. Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti-6Al-4V[J]. Journal of Occupational Medicine, 70, 1670-1676(2018).

    [41] Mereddy S, Bermingham M J, StJohn D H et al. Grain refinement of wire arc additively manufactured titanium by the addition of silicon[J]. Journal of Alloys and Compounds, 695, 2097-2103(2017).

    Changfu Li, Haoxian Ren, Jiaqi Bu, Xiangming Wang, guang Yang. Study on Microstructures and Properties of Additive Manufactured Ti-6Al-4V Alloy with Boron[J]. Chinese Journal of Lasers, 2021, 48(18): 1802014
    Download Citation