• High Power Laser and Particle Beams
  • Vol. 34, Issue 5, 054001 (2022)
Haoyan Jia1、2, Senlin Huang1、2、*, Yi Jiao3, Jingyi Li3, Kexin Liu1、2, Shuai Liu1、2, Weihang Liu3, Zhongqi Liu1、2, Tianyun Long1、2、4, Weilun Qin4, and Sheng Zhao1、2
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
  • 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 4Deutsches Elektronen-Synchrotron (DESY), Hamburg 22603, Germany
  • show less
    DOI: 10.11884/HPLPB202234.220056 Cite this Article
    Haoyan Jia, Senlin Huang, Yi Jiao, Jingyi Li, Kexin Liu, Shuai Liu, Weihang Liu, Zhongqi Liu, Tianyun Long, Weilun Qin, Sheng Zhao. Research advances in ultrafast X-ray free-electron lasers[J]. High Power Laser and Particle Beams, 2022, 34(5): 054001 Copy Citation Text show less
    References

    [1] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 21, 843-855(2014).

    [2] Tavares P F, Leemann S C, Sjöström M, et al. The MAX IV storage ring project[J]. Journal of Synchrotron Radiation, 21, 862-877(2014).

    [3] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 25, 1611-1618(2018).

    [4] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 347, 978-982(2015).

    [5] Fukuzawa H, Son S K, Motomura K, et al. Deep inner-shell multiphoton ionization by intense X-ray free-electron laser pulses[J]. Physical Review Letters, 110, 173005(2013).

    [6] Chapman H N, Barty A, Bogan M J, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser[J]. Nature Physics, 2, 839-843(2006).

    [7] Lünnemann S, Kuleff A I, Cederbaum L S. Charge migration following ionization in systems with chromophore-donor and amine-acceptor sites[J]. The Journal of Chemical Physics, 129, 104305(2008).

    [8] Goulielmakis E, Loh Z H, Wirth A, et al. Real-time observation of valence electron motion[J]. Nature, 466, 739-743(2010).

    [9] Li X F, L’Huillier A, Ferray M, et al. Multiple-harmonic generation in rare gases at high laser intensity[J]. Physical Review A, 39, 5751-5761(1989).

    [10] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).

    [11] Li Jie, Ren Xiaoming, Yin Yanchun, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 8, 186(2017).

    [12] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 5, 655-663(2011).

    [13] Popmintchev T, Chen Mingchang, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [14] Kim K J, Huang Zhirong, Lindberg R. Synchrotron radiation freeelectron lasers: principles of coherent Xray generation[M]. Huang Senlin, Liu Kexin, trans. Beijing: Peking University Press, 2018

    [15] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 1, 336-342(2007).

    [16] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 4, 641-647(2010).

    [17] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 6, 540-544(2012).

    [18] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 6, 699-704(2012).

    [19] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 7, 913-918(2013).

    [20] Kang H S, Min C K, Heo H, et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter[J]. Nature Photonics, 11, 708-713(2017).

    [21] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 14, 391-397(2020).

    [22] Prat E, Abela R, Aiba M, et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam[J]. Nature Photonics, 14, 748-754(2020).

    [23] Zhao Zhentang, Wang Dong, Gu Qiang, et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 30, 29-33(2017).

    [24] Galayda J N. The linac coherent light sourceII project[C]Proceedings of the 5th International Particle Accelerat Conference (IPAC 2014). 2014: 935937.

    [25] Zhao Zhentang, Wang Dong, Yang Ziyan, et al. SCLF: an 8GeV CW SCRF linacbased Xray FEL facility in Shanghai[C]Proceedings of the 38th International Free Electron Laser Conference (FEL 2017). 2017: 182184.

    [26] Bonifacio R, De Salvo L, Pierini P, et al. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise[J]. Physical Review Letters, 73, 70-73(1994).

    [27] Coffee R N, Cryan J P, Duris J, et al. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, 20180386(2019).

    [28] Saldin E L, Schneidmiller E A, Yurkov M V. Terawatt-scale sub-10-fs laser technology – key to generation of GW-level attosecond pulses in X-ray free electron laser[J]. Optics Communications, 237, 153-164(2004).

    [29] Zholents A A, Fawley W M. Proposal for intense attosecond radiation from an X-ray free-electron laser[J]. Physical Review Letters, 92, 224801(2004).

    [30] Saldin E L, Schneidmiller E A, Yurkov M V. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs[J]. Optics Communications, 239, 161-172(2004).

    [31] Saldin E L, Schneidmiller E A, Yurkov M V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond X-ray pulses[J]. Physical Review Accelerators and Beams, 9, 050702(2006).

    [32] Fawley W M. Production of ultrashort FEL XUV pulses via a reverse undulator taper[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593, 111-115(2008).

    [33] Duris J, Zhang Z, MacArthur J, et al. Superradiant amplification in a chirped-tapered X-ray free-electron laser[J]. Physical Review Accelerators and Beams, 23, 020702(2020).

    [34] MacArthur J P, Duris J, Zhang Zhen, et al. Phase-stable self-modulation of an electron beam in a magnetic wiggler[J]. Physical Review Letters, 123, 214801(2019).

    [35] Bonifacio R, McNeil B W J, Pierini P. Superradiance in the high-gain free-electron laser[J]. Physical Review A, 40, 4467-4475(1989).

    [36] Bonifacio R, Piovella N, McNeil B W J. Superradiant evolution of radiation pulses in a free-electron laser[J]. Physical Review A, 44, R3441-R3444(1991).

    [37] Lutman A A, Coffee R, Ding Yuantao, et al. Experimental demonstration of femtosecond two-color X-ray free-electron lasers[J]. Physical Review Letters, 110, 134801(2013).

    [38] Hara T, Inubushi Y, Katayama T, et al. Two-colour hard X-ray free-electron laser with wide tunability[J]. Nature Communications, 4, 2919(2013).

    [39] Lutman A A, Maxwell T J, MacArthur J P, et al. Fresh-slice multicolour X-ray free-electron lasers[J]. Nature Photonics, 10, 745-750(2016).

    [40] Zhang Zhen, Duris J, MacArthur J P, et al. Double chirp-taper X-ray free-electron laser for attosecond pump-probe experiments[J]. Physical Review Accelerators and Beams, 22, 050701(2019).

    [41] Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Accelerators and Beams, 8, 040701(2005).

    [42] Zholents A A, Penn G. Obtaining attosecond X-ray pulses using a self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 8, 050704(2005).

    [43] Ding Yuantao, Huang Zhirong, Ratner D, et al. Generation of attosecond X-ray pulses with a multicycle two-color enhanced self-amplified spontaneous emission scheme[J]. Physical Review Accelerators and Beams, 12, 060703(2009).

    [44] Kumar S, Kang H S, Kim D E. Generation of isolated single attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme[J]. Optics Express, 19, 7537-7545(2011).

    [45] Kumar S, Kang H S, Kim D E. For the generation of an intense isolated pulse in hard X-ray region using X-ray free electron laser[J]. Laser and Particle Beams, 30, 397-406(2012).

    [46] Qi Zheng, Feng Chao, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 21, 120703(2018).

    [47] Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 14, 30-36(2020).

    [48] Li Siqi, Guo Zhaoheng, Coffee R N, et al. Characterizing isolated attosecond pulses with angular streaking[J]. Optics Express, 26, 4531-4547(2018).

    [49] Hartmann N, Hartmann G, Heider R, et al. Attosecond time–energy structure of X-ray free-electron laser pulses[J]. Nature Photonics, 12, 215-220(2018).

    [50] Zhang Zhen, Duris J, MacArthur J P, et al. Experimental demonstration of enhanced self-amplified spontaneous emission by photocathode temporal shaping and self-compression in a magnetic wiggler[J]. New Journal of Physics, 22, 083030(2020).

    [51] Duris J P, MacArthur J P, Glownia J M, et al. Controllable X-ray pulse trains from enhanced self-amplified spontaneous emission[J]. Physical Review Letters, 126, 104802(2021).

    [52] Emma P, Bane K, Cornacchia M, et al. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser[J]. Physical Review Letters, 92, 0748011(2004).

    [53] Serkez S, Decker F J, Cho M H, et al. Generating trains of attosecond pulses with a freeelectron laser[C]Proceedings of FEL 2019. 2019: 692694.

    [54] Ding Yuantao, Behrens C, Emma P, et al. Femtosecond X-ray pulse temporal characterization in free-electron lasers using a transverse deflector[J]. Physical Review Special Topics - Accelerators and Beams, 14, 120701(2011).

    [55] Ding Yuantao, Behrens C, Coffee R, et al. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers[J]. Applied Physics Letters, 107, 191104(2015).

    [56] Marinelli A, Macarthur J, Emma P, et al. Experimental demonstration of a single-spike hard-X-ray free-electron laser starting from noise[J]. Applied Physics Letters, 111, 151101(2017).

    [57] Huang Zhirong, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Physical Review Accelerators and Beams, 7, 074401(2004).

    [58] Huang Zhirong, Brachmann A, Decker F J, et al. Measurements of the linac coherent light source laser heater and its impact on the X-ray free-electron laser performance[J]. Physical Review Special Topics. Accelerators and Beams, 13, 020703(2010).

    [59] Marinelli A, Coffee R, Vetter S, et al. Optical shaping of X-ray free-electron lasers[J]. Physical Review Letters, 116, 254801(2016).

    [60] Emma P, Huang Zhirong. Femtosecond X-ray pulses from a spatially chirped electron bunch in a SASE FEL[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 528, 458-462(2004).

    [61] Zholents A A, Zolotorev M S. Attosecond X-ray pulses produced by ultra short transverse slicing via laser electron beam interaction[J]. New Journal of Physics, 10, 025005(2008).

    [62] Bane K L F, Stupakov G. Corrugated pipe as a beam dechirper[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 690, 106-110(2012).

    [63] Antipov S, Baturin S, Jing C, et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure[J]. Physical Review Letters, 112, 114801(2014).

    [64] Deng Haixiao, Zhang Meng, Feng Chao, et al. Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures[J]. Physical Review Letters, 113, 254802(2014).

    [65] Emma P, Venturini M, Bane K L F, et al. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe[J]. Physical Review Letters, 112, 034801(2014).

    [66] Zhang Zhen, Bane K, Ding Yuantao, et al. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source[J]. Physical Review Accelerators and Beams, 18, 010702(2015).

    [67] Zemella J, Bane K, Fisher A, et al. Measurements of wake-induced electron beam deflection in a dechirper at the Linac Coherent Light Source[J]. Physical Review Accelerators and Beams, 20, 104403(2017).

    [68] Lutman A A, Guetg M W, Maxwell T J, et al. High-power femtosecond soft X rays from fresh-slice multistage free-electron lasers[J]. Physical Review Letters, 120, 264801(2018).

    [69] Prat E, Aiba M. General and efficient dispersion-based measurement of beam slice parameters[J]. Physical Review Accelerators and Beams, 17, 032801(2014).

    [70] Prat E, Bettoni S, Reiche S. Enhanced X-ray free-electron-laser performance from tilted electron beams[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 865, 1-8(2017).

    [71] Guetg M W, Lutman A A, Ding Yuantao, et al. Dispersion-based fresh-slice scheme for free-electron lasers[J]. Physical Review Letters, 120, 264802(2018).

    [72] Reiche S, Musumeci P, Pellegrini C, et al. Development of ultra-short pulse, single coherent spike for SASE X-ray FELs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593, 45-48(2008).

    [73] Ding Yuantao, Brachmann A, Decker F J, et al. Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source[J]. Physical Review Letters, 102, 254801(2009).

    [74] Behrens C, Decker F J, Ding Yuantao, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers[J]. Nature Communications, 5, 3762(2014).

    [75] Beutner B, Reiche S, Scherrer P. Operation modes longitudinal layout f the SwissFEL hard Xray facility[C]Proceedings of FEL 2011. 2011: 235238.

    [76] Marchetti B, Krasilnikov M, Stephan F, et al. Compression of a 20 pC e-bunch at the European XFEL for single spike operation[J]. Physics Procedia, 52, 80-89(2014).

    [77] Huang Senlin, Ding Yuantao, Huang Zhirong, et al. Generation of stable subfemtosecond hard X-ray pulses with optimized nonlinear bunch compression[J]. Physical Review Accelerators and Beams, 17, 120703(2014).

    [78] Huang Senlin, Ding Yuantao, Feng Yiping, et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers[J]. Physical Review Letters, 119, 154801(2017).

    [79] Malyzhenkov A, Arbelo Y P, Craievich P, et al. Single- and two-color attosecond hard X-ray free-electron laser pulses with nonlinear compression[J]. Physical Review Research, 2, 042018(2020).

    [80] Thompson N R, McNeil B W J. Mode locking in a free-electron laser amplifier[J]. Physical Review Letters, 100, 203901(2008).

    [81] Dunning D J, McNeil B W J, Thompson N R. Few-cycle pulse generation in an X-ray free-electron laser[J]. Physical Review Letters, 110, 104801(2013).

    [82] Prat E, Reiche S. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses[J]. Physical Review Letters, 114, 244801(2015).

    [83] Prat E, Löhl F, Reiche S. Efficient generation of short and high-power X-ray free-electron-laser pulses based on superradiance with a transversely tilted beam[J]. Physical Review Accelerators and Beams, 18, 100701(2015).

    [84] Tanaka T. Proposal for a pulse-compression scheme in X-ray free-electron lasers to generate a multiterawatt, attosecond X-ray pulse[J]. Physical Review Letters, 110, 084801(2013).

    [85] Kumar S, Parc Y W, Landsman A S, et al. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser[J]. Scientific Reports, 6, 37700(2016).

    [86] Wang Zhen, Feng Chao, Zhao Zhentang. Generating isolated terawatt-attosecond X-ray pulses via a chirped-laser-enhanced high-gain free-electron laser[J]. Physical Review Accelerators and Beams, 20, 040701(2017).

    [87] Huang Senlin, Ding Yuantao, Huang Zhirong, et al. Generation of subterawatt-attosecond pulses in a soft X-ray free-electron laser[J]. Physical Review Accelerators and Beams, 19, 080702(2016).

    [88] Tanaka T. Proposal to generate an isolated monocycle X-ray pulse by counteracting the slippage effect in free-electron lasers[J]. Physical Review Letters, 114, 044801(2015).

    [89] Schulz S, Grguraš I, Behrens C, et al. Femtosecond all-optical synchronization of an X-ray free-electron laser[J]. Nature Communications, 6, 5938(2015).

    [90] Hemsing E, Knyazik A, Dunning M, et al. Coherent optical vortices from relativistic electron beams[J]. Nature Physics, 9, 549-553(2013).

    [91] Ribič P R, Rösner B, Gauthier D, et al. Extreme-ultraviolet vortices from a free-electron laser[J]. Physical Review X, 7, 031036(2017).

    [92] Hemsing E. Coherent photons with angular momentum in a helical afterburner[J]. Physical Review Accelerators and Beams, 23, 020703(2020).

    [93] Tibai Z, Tóth G, Mechler M I, et al. Proposal for carrier-envelope-phase stable single-cycle attosecond pulse generation in the extreme-ultraviolet range[J]. Physical Review Letters, 113, 104801(2014).

    [94] Peng Liangyou, Starace A F. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions[J]. Physical Review A, 76, 043401(2007).

    Haoyan Jia, Senlin Huang, Yi Jiao, Jingyi Li, Kexin Liu, Shuai Liu, Weihang Liu, Zhongqi Liu, Tianyun Long, Weilun Qin, Sheng Zhao. Research advances in ultrafast X-ray free-electron lasers[J]. High Power Laser and Particle Beams, 2022, 34(5): 054001
    Download Citation