• Photonics Research
  • Vol. 10, Issue 5, A74 (2022)
Zunyue Zhang1, Yi Wang1, Jiarui Wang2, Dan Yi1, David Weng U Chan1, Wu Yuan2, and Hon Ki Tsang1、*
Author Affiliations
  • 1Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
  • 2Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1364/PRJ.443039 Cite this Article Set citation alerts
    Zunyue Zhang, Yi Wang, Jiarui Wang, Dan Yi, David Weng U Chan, Wu Yuan, Hon Ki Tsang. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating[J]. Photonics Research, 2022, 10(5): A74 Copy Citation Text show less
    References

    [1] H. Toda, T. Yamashita, T. Kuri, K. Kitayama. Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems. J. Lightwave Technol., 21, 1735-1741(2003).

    [2] C. R. Doerr, L. Zhang, P. J. Winzer. Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating. J. Lightwave Technol., 29, 536-541(2011).

    [3] N. R. Walker, M. J. Linman, M. M. Timmers, S. L. Dean, C. M. Burkett, J. A. Lloyd, J. D. Keelor, B. M. Baughman, P. L. Edmiston. Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films. Anal. Chim. Acta, 593, 82-91(2007).

    [4] C. Tien-Hsin, T. L. Thomas, R. D. Scott, D. R. Scott, F. George, L. Ben, M. Alan, H. A. Michael. Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing. Proc. SPIE, 6977, 69770P(2008).

    [5] S. S. Saavedra, W. M. Reichert. In situ quantitation of protein adsorption density by integrated optical waveguide attenuated total reflection spectrometry. Langmuir, 7, 995-999(1991).

    [6] B. Brent, K. Pradeep, C. David, A. Ivan. Compact low-cost waveguide-based optical spectrometer for detection of chemical/biological agents. Proc. SPIE, 8374, 83740Z(2012).

    [7] P. Gatkine, S. Veilleux, M. Dagenais. Astrophotonic spectrographs. Appl. Sci., 9, 290(2019).

    [8] J. P. Maillard, L. Drissen, F. Grandmont, S. Thibault. Integral wide-field spectroscopy in astronomy: the Imaging FTS solution. Exp. Astron., 35, 527-559(2013).

    [9] B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. V. Leeuwen, M. Pollnau, K. Wörhoff, R. M. D. Ridder. Toward spectral-domain optical coherence tomography on a chip. IEEE J. Sel. Top. Quantum Electron., 18, 1223-1233(2012).

    [10] E. A. Rank, R. Sentosa, D. J. Harper, M. Salas, A. Gaugutz, D. Seyringer, S. Nevlacsil, A. Maese-Novo, M. Eggeling, P. Muellner, R. Hainberger, M. Sagmeister, J. Kraft, R. A. Leitgeb, W. Drexler. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci. Appl., 10, 6(2021).

    [11] Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [12] M. C. M. M. Souza, A. Grieco, N. C. Frateschi, Y. Fainman. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat. Commun., 9, 665(2018).

    [13] A. Li, Y. Fainman. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra-high resolution. Laser Photon. Rev., 15, 2000358(2021).

    [14] S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, D. Xu. Planar waveguide echelle gratings in silica-on-silicon. IEEE Photon. Technol. Lett., 16, 503-505(2004).

    [15] X. Ma, M. Li, J. He. CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array. IEEE Photon. J., 5, 6600807(2013).

    [16] M. K. Smit. New focusing and dispersive planar component based on an optical phased array. Electron. Lett., 24, 385-386(1988).

    [17] Z. Zhang, Y. Wang, H. K. Tsang. Ultracompact 40-channel arrayed waveguide grating on silicon nitride platform at 860 nm. IEEE J. Quantum Electron., 56, 8400308(2020).

    [18] S. Cheung, T. Su, K. Okamoto, S. J. B. Yoo. Ultra-compact silicon photonic 512 × 512 25  GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).

    [19] D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. R. Heck, D. J. Blumenthal, J. E. Bowers. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express, 19, 14130-14136(2011).

    [20] T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, F. Y. Gardes. Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared. Opt. Express, 25, 27310-27320(2017).

    [21] Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, G. T. Reed. Wavelength division (de)multiplexing based on dispersive self-imaging. Opt. Lett., 36, 4488-4490(2011).

    [22] B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, A. Adibi. Integrated photonic crystal spectrometers for sensing applications. Opt. Commun., 282, 3168-3171(2009).

    [23] B. Momeni, E. S. Hosseini, A. Adibi. Planar photonic crystal microspectrometers in silicon-nitride for the visible range. Opt. Express, 17, 17060-17069(2009).

    [24] Z. Zhang, Y. Wang, H. K. Tsang. Experimental study of dependence of waveguide array phase errors on waveguide width. Proceedings of Asia Communications and Photonics Conference (ACP), 1-3(2019).

    [25] P. Gatkine, N. Jovanovic, C. Hopgood, S. Ellis, R. Broeke, K. Ławniczuk, J. Jewell, J. K. Wallace, D. Mawet. Potential of commercial SiN MPW platforms for developing mid/high-resolution integrated photonic spectrographs for astronomy. Appl. Opt., 60, D15-D32(2021).

    [26] B. Redding, S. F. Liew, R. Sarma, H. Cao. Compact spectrometer based on a disordered photonic chip. Nat. Photonics, 7, 746-751(2013).

    [27] B. Redding, S. Fatt Liew, Y. Bromberg, R. Sarma, H. Cao. Evanescently coupled multimode spiral spectrometer. Optica, 3, 956-962(2016).

    [28] N. K. Metzger, R. Spesyvtsev, G. D. Bruce, B. Miller, G. T. Maker, G. Malcolm, M. Mazilu, K. Dholakia. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization. Nat. Commun., 8, 15610(2017).

    [29] Z. Zhang, Y. Li, Y. Wang, Z. Yu, X. Sun, H. K. Tsang. Compact high resolution speckle spectrometer by using linear coherent integrated network on silicon nitride platform at 776  nm. Laser Photon. Rev., 15, 2100039(2021).

    [30] B. I. Akca, C. R. Doerr. Interleaved silicon nitride AWG spectrometers. IEEE Photon. Technol. Lett., 31, 90-93(2019).

    [31] A. van Wijk, C. R. Doerr, Z. Ali, M. Karabiyik, B. I. Akca. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings. Opt. Express, 28, 14618-14626(2020).

    [32] A. Stoll, K. Madhav, M. Roth. Performance limits of astronomical arrayed waveguide gratings on a silica platform. Opt. Express, 28, 39354-39367(2020).

    [33] H. H. Zhu, S. N. Zheng, J. Zou, H. Cai, Z. Y. Li, A. Q. Liu. A high-resolution Integrated Spectrometer based on cascaded a ring resonator and an AWG. Proceedings of Conference on Lasers and Electro-Optics, JTu2G.32(2020).

    [34] J. Zou, Z. Le, J. He. Temperature self-compensated optical waveguide biosensor based on cascade of ring resonator and arrayed waveguide grating spectrometer. J. Lightwave Technol., 34, 4856-4863(2016).

    [35] G. Yurtsever, R. Baets. Integrated spectrometer on silicon on insulator. Proceedings of 16th Annual Symposium of the IEEE Photonics Benelux Chapter, 273-276(2011).

    [36] Z. Zhang, Y. Wang, H. K. Tsang. Tandem configuration of microrings and arrayed waveguide gratings for a high-resolution and broadband stationary optical spectrometer at 860  nm. ACS Photon., 8, 1251-1257(2021).

    [37] S. Zheng, H. Cai, J. Song, J. Zou, P. Y. Liu, Z. Lin, D. Kwong, A. Liu. A single-chip integrated spectrometer via tunable microring resonator array. IEEE Photon. J., 11, 6602809(2019).

    [38] M. M. Milosevic, X. Chen, W. Cao, D. J. Thomson, G. T. Reed, C. G. Littlejohns, H. Wang. Ion implantation in silicon for photonic device trimming. Proceedings of Conference on Lasers and Electro-Optics Pacific Rim, s1915(2017).

    [39] K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, H. Pehamberger. Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300-nm wavelength region. Opt. Lett., 28, 707-709(2003).

    [40] A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, D. Kopf. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800  nm and 1300  nm. Opt. Express, 14, 1145-1160(2006).

    [41] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, L. Chrostowski. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express, 23, 3795-3808(2015).

    [42] J. M. Choi, R. K. Lee, A. Yariv. Ring fiber resonators based on fused-fiber grating add–drop filters: application to resonator coupling. Opt. Lett., 27, 1598-1600(2002).

    [43] K. Okamoto. Planar lightwave circuits. Fundamentals of Optical Waveguides, 417-534(2006).

    [44] D. Dai, L. Liu, S. He. Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer. Opt. Commun., 270, 195-202(2007).

    [45] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G. Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    Zunyue Zhang, Yi Wang, Jiarui Wang, Dan Yi, David Weng U Chan, Wu Yuan, Hon Ki Tsang. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating[J]. Photonics Research, 2022, 10(5): A74
    Download Citation