• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0516001 (2022)
Ruizhen Hu1, Jianyang Wang1, and Qiannan Wu1、2、3、4、*
Author Affiliations
  • 1Department of Physics, College of Science, North University of China, Taiyuan , Shanxi 030051, China
  • 2Nantong Institute of Intelligent Opto-Mechatronics of North University of China, Nantong , Jiangsu 226000, China
  • 3Center for Microsystem Integration, North University of China, Taiyuan , Shanxi 030051, China
  • 4Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan , Shanxi 030051, China
  • show less
    DOI: 10.3788/LOP202259.0516001 Cite this Article Set citation alerts
    Ruizhen Hu, Jianyang Wang, Qiannan Wu. A Metamaterial Terahertz Multi-Frequency Absorber Based on Square Symmetry[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0516001 Copy Citation Text show less
    References

    [1] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [2] Li J Z, Tian H, Liu H T et al. Design and verification of a radar-infrared stealth-compatible material based on metamaterial[J]. Journal of Functional Materials, 48, 5137-5143(2017).

    [3] Wang C, Zhang G. Environmental pollution caused by electromagnetic radiation and protective measures[J]. Environment and Development, 30, 56-57(2018).

    [4] Wang Y N. Electromagnetic biological effect and electromagnetic environment monitoring system[D](2007).

    [5] Lü Z Y. Study on metamaterial wideband absorbers and applications[D](2017).

    [6] Ye D X, Zheng B, Lu L. Stealth talk[J]. Physics, 47, 253-256(2018).

    [7] Zhang S W. Overview of anti-stealth radar technology[J]. China New Telecommunications, 20, 36(2018).

    [8] Shimpi T M, Swanson D E, Drayton J et al. CdS barrier to minimize Zn loss during CdCl2 treatment of Cd-Zn-Te absorbers[J]. Solar Energy, 173, 1181-1188(2018).

    [9] Yang R G[M]. Electromagnetic field and electromagnetic wave(2007).

    [10] Jiang Y N, Wang Y, Ge D B et al. An ultra-wideband absorber based on graphene[J]. Acta Physica Sinica, 65, 054101(2016).

    [11] Landy N I, Sajujigbe S, Mock J J et al. A perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [12] Zhu R, Liu X N, Hu G K et al. Microstructural designs of plate-type elastic metamaterial and their potential applications: a review[J]. International Journal of Smart and Nano Materials, 6, 14-40(2015).

    [13] Zhou Q, Yin X W, Zhang L T et al. Research progress of microwave tunable metamaterial absorber[J]. Science & Technology Review, 34, 40-46(2016).

    [14] Hao H G, Ding T Y, Luo W et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 55, 061604(2018).

    [15] Han S, Yang H L. Study on the design and measurement of dual-directional multi-band metamaterial absorber[J]. Acta Physica Sinica, 62, 174102(2013).

    [16] He Y, Wu Q N, Yan S N. Multi-band terahertz absorber at 0.1‒1 THz frequency based on ultra-thin metamaterial[J]. Plasmonics, 14, 1303-1310(2019).

    [17] Wang J Y, Wu Q N. Metamaterial terahertz broadband reflector with double-layer grid[J]. Chinese Journal of Lasers, 47, 0614002(2020).

    [18] Gao W, Wang J Y, Wu Q N. Design and investigation of a metamaterial terahertz broadband bandpass filter based on dual metallic rings[J]. Laser & Optoelectronics Progress, 58, 0516001(2021).

    [19] Shi J K, Pan C, Li J X et al. Design of terahertz four band metamaterial absorber[J]. Science & Technology Vision, 48-50(2018).

    [20] Hu F R, Wang L, Quan B G et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D: Applied Physics, 46, 195103(2013).

    [21] Zhang Y. Millimeter waves multibands absorbers based on flexible metamaterial[D](2017).

    [22] Hao M Z, Yan F P, Wang W et al. Metamaterial-based terahertz polarization-insensitive broadband absorber[J]. Chinese Journal of Lasers, 46, 1214002(2019).

    [23] Wang G Z, Wang B X. Five-band terahertz metamaterial absorber based on a four-gap comb resonator[J]. Journal of Lightwave Technology, 33, 5151-5156(2015).

    [24] Sabah C, Mulla B, Altan H et al. Cross-like terahertz metamaterial absorber for sensing applications[J]. Pramana, 91, 1-7(2018).

    [25] Bakshi S C, Mitra D, Minz L. A compact design of multiband terahertz metamaterial absorber with frequency and polarization tunability[J]. Plasmonics, 13, 1843-1852(2018).

    [26] Liu Y, Xu S Q, Liu M et al. Tunable multi-band terahertz absorber based on a one-dimensional heterostructure containing semiconductor[J]. Optik, 170, 203-209(2018).

    [27] Huang M L, Cheng Y Z, Cheng Z Z et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Optics Communications, 415, 194-201(2018).

    [28] He Y. The simulation and design of multiband terahertz metamaterial absorber[D](2020).

    Ruizhen Hu, Jianyang Wang, Qiannan Wu. A Metamaterial Terahertz Multi-Frequency Absorber Based on Square Symmetry[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0516001
    Download Citation