• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 1, 87 (2016)
YANG Zhong-Bo1、*, WANG Hua-Bin1, PENG Xiao-Yu1, SHI Chang-Cheng1, XIA Liang-Ping1, TANG Ming-Jie1, CHANG Tian-Ying1、2, WEI Dong-Shan1, DU Chun-Lei1, and CUI Hong-Liang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.01.016 Cite this Article
    YANG Zhong-Bo, WANG Hua-Bin, PENG Xiao-Yu, SHI Chang-Cheng, XIA Liang-Ping, TANG Ming-Jie, CHANG Tian-Ying, WEI Dong-Shan, DU Chun-Lei, CUI Hong-Liang. Recent progress in scanning probe microscope based super-resolution near-field fingerprint microscopy[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 87 Copy Citation Text show less
    References

    [1] Binnig G, Rohrer H, Gerber C, et al. Tunneling through a controllable vacuum gap [J]. Applied Physics Letters, 1982, 40(2): 178-180.

    [2] Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Physical Review Letters, 1986, 56(9): 930-933.

    [3] Muller D J, Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions [J]. Biophysical Journal, 1997, 73(3): 1633-1644.

    [4] Wang H B, Wilksch J J, Lithgow T, et al. Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection: the polysaccharide capsule in Klebsiella is a responsive polymer hydrogel that adapts to osmotic stress [J]. Soft Matter, 2013, 9(31): 7560-7567.

    [5] Wang H B, Wang X Y, Li H B, et al. Molecular expansion of an individual coiled DNA on a graphite surface [J]. Langmuir, 2011, 27(6): 2405-2410.

    [8] Ishihara K, Ohashi K, Ikari T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture [J]. Applied Physics Letters, 2006, 89(20): 201120.

    [9] Pohl D W, Denk W, Lanz M. Optical stethoscopy-image recording with resolution lambda/20 [J]. Applied Physics Letters, 1984, 44(7): 651-653.

    [10] Michaels C A, Stranick S J, Richter L J, et al. Scanning near-field infrared microscopy and spectroscopy with a broadband laser source [J]. Journal of Applied Physics, 2000, 88(8): 4832-4839.

    [11] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering [J]. Nature, 2013, 498(7452): 82-86.

    [12] Huth F, Govyadinov A, Amarie S, et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution [J]. Nano Letters, 2012, 12(8): 3973-3978.

    [13] Huber A J, Keilmann F, Wittborn J, et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices [J]. Nano Letters, 2008, 8(11): 3766-3770.

    [14] Thomas S, Kruger M, Forster M, et al. Probing of optical near-fields by electron rescattering on the 1 nm scale [J]. Nano Letters, 2013, 13(10): 4790-4794.

    [15] Knoll B, Keilmann F. Mid-infrared scanning near-field optical microscope resolves 30 nm [J]. Journal of Microscopy-Oxford, 1999, 194: 512-515.

    [16] Fleischmann M, Hendra P J, McQuilla.Aj. Raman-spectra of pyridine absorbed at a silver electrode [J]. Chemical Physics Letters, 1974, 26(2): 163-166.

    [17] Jeanmaire D L, Vanduyne R P. Surface Raman spectroelectrochemistry .1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode [J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.

    [18] Pettinger B, Schambach P, Villagomez C J, et al. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules [J]. Annual Review of Physical Chemistry, 2012, 63: 379-399.

    [19] Chan K L A, Kazarian S G. Tip-enhanced Raman mapping with top-illumination AFM [J]. Nanotechnology, 2011, 22(17): 175701.

    [20] Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy [J]. Nanoscale, 2012, 4(6): 1856-1870.

    [21] Steidtner J, Pettinger B. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum [J]. Review of Scientific Instruments, 2007, 78(10): 103104.

    [22] Sun M T, Zhang Z L, Zheng H R, et al. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy [J]. Scientific Reports, 2012, 2:647.

    [23] Chen C, Hayazawa N, Kawata S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient [J]. Nature Communications, 2014, 5: 3312.

    [24] Nakata A, Nomoto T, Toyota T, et al. Tip-enhanced Raman spectroscopy of lipid bilayers in water with an alumina-and silver-coated tungsten tip [J]. Analytical Sciences, 2013, 29(9): 865-869.

    [25] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers [J]. Physical Review Letters, 1980, 45(3): 201-204.

    [26] Brown L V, Zhao K, King N, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties [J]. Journal of the American Chemical Society, 2013, 135(9): 3688-3695.

    [27] Pollard B, Muller E A, Hinrichs K, et al. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics [J]. Nature Communications, 2014, 5: 3587.

    [28] Knoll B, Keilmann F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy [J]. Optics Communications, 2000, 182(4-6): 321-328.

    [29] Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale [J]. Nature, 2002, 418(6894): 159-162.

    [30] Knoll B, Keilmann F. Near-field probing of vibrational absorption for chemical microscopy [J]. Nature, 1999, 399(6732): 134-137.

    [31] Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale [J]. Physical Review Letters, 2000, 85(14): 3029-3032.

    [32] Huth F, Schnell M, Wittborn J, et al. Infrared-spectroscopic nanoimaging with a thermal source [J]. Nature Materials, 2011, 10(5): 352-356.

    [33] Amenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy [J]. Nature Communications, 2013, 4: 3587.

    [34] Brucherseifer M, Kranz C, Mizaikoff B. Combined in situ atomic force microscopy-infrared-attenuated total reflection spectroscopy [J]. Analytical Chemistry, 2007, 79(22): 8803-8806.

    [35] Buersgens F, Kersting R, Chen H T. Terahertz microscopy of charge carriers in semiconductors [J]. Applied Physics Letters, 2006, 88(11): 112115.

    [36] Yamamoto K, Ishida H. Optical theory applied to infrared-spectroscopy [J]. Vibrational Spectroscopy, 1994, 8(1): 1-36.

    [37] Chen H T, Kersting R, Cho G C. Terahertz imaging with nanometer resolution [J]. Applied Physics Letters, 2003, 83(15): 3009-3011.

    [38] Planken P C M, van Rijmenam C, Schouten R N. Opto-electronic pulsed THz systems [J]. Semiconductor Science and Technology, 2005, 20(7): S121-S127.

    [39] von Ribbeck H G, Brehm M, van der Weide D W, et al. Spectroscopic THz near-field microscope [J]. Optics Express, 2008, 16(5): 3430-3438.

    [40] Jacob R, Winnerl S, Fehrenbacher M, et al. Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy [J]. Nano Letters, 2012, 12(8): 4336-4340.

    [41] Kurihara T, Yamaguchi K, Watanabe H, et al. Dielectric probe for scattering-type terahertz scanning near-field optical microscopy [J]. Applied Physics Letters, 2013, 103(15): 151105.

    CLP Journals

    [1] CHEN Nan, WANG Yue, WANG Bo-yu, XIA Yang, LIU Tao. Research on Numerical Model of Nano-FTIR System Based on COMSOL[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1125

    YANG Zhong-Bo, WANG Hua-Bin, PENG Xiao-Yu, SHI Chang-Cheng, XIA Liang-Ping, TANG Ming-Jie, CHANG Tian-Ying, WEI Dong-Shan, DU Chun-Lei, CUI Hong-Liang. Recent progress in scanning probe microscope based super-resolution near-field fingerprint microscopy[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 87
    Download Citation