• Advanced Photonics Nexus
  • Vol. 1, Issue 2, 024001 (2022)
Renlong Zhou1, Kaleem Ullah2, Naveed Hussain3, Mohammed M. Fadhali4、5, Sa Yang1, Qiawu Lin1, Muhammad Zubair6, and Muhammad Faisal Iqbal7、8、*
Author Affiliations
  • 1Guangdong University of Education, School of Physics and Information Engineering, Guangzhou, China
  • 2University of Delaware, Department of Electrical and Computer Engineering, Newark, Delaware, United States
  • 3University of California, Department of Electrical Engineering and Computer Science, Irvine, California, United States
  • 4Jazan University, Faculty of Science, Department of Physics, Jazan, Saudi Arabia
  • 5Ibb University, Faculty of Science, Department of Physics, Ibb, Yemen
  • 6Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, Jülich, Germany
  • 7University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, China
  • 8Riphah International University Faisalabad, Department of Physics, Faisalabad, Pakistan
  • show less
    DOI: 10.1117/1.APN.1.2.024001 Cite this Article Set citation alerts
    Renlong Zhou, Kaleem Ullah, Naveed Hussain, Mohammed M. Fadhali, Sa Yang, Qiawu Lin, Muhammad Zubair, Muhammad Faisal Iqbal. Recent advances in photonics of three-dimensional Dirac semimetal Cd3As2[J]. Advanced Photonics Nexus, 2022, 1(2): 024001 Copy Citation Text show less
    References

    [1] N. P. Armitage, E. J. Mele, A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 90, 15001(2018).

    [2] X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057-1110(2011).

    [3] Z. K. Liu et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater., 13, 677-681(2014). https://doi.org/10.1038/nmat3990

    [4] F. Ceballos, H. Zhao. Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater., 27, 1604509(2017).

    [5] T. Jiang et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics, 12, 430-436(2018).

    [6] K. F. Mak et al. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun., 152, 1341-1349(2012).

    [7] H. A. Hafez et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 561, 507-511(2018).

    [8] H. A. Hafez et al. Terahertz nonlinear optics of graphene: from saturable absorption to high-harmonics generation. Adv. Opt. Mater., 8, 1900771(2020).

    [9] F. Bonaccorso et al. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [10] C. N. R. Rao et al. Graphene: the new two-dimensional nanomaterial. Angew. Chemie Int. Ed., 48, 7752-7777(2009).

    [11] M. Liu et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [12] S. Borisenko et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett., 113, 027603(2014).

    [13] M. Neupane et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun., 5, 3786(2014). https://doi.org/10.1038/ncomms4786

    [14] Q. Li et al. Chiral magnetic effect in ZrTe5. Nat. Phys., 12, 550-554(2016). https://doi.org/10.1038/nphys3648

    [15] Z. K. Liu et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 343, 864-867(2014). https://doi.org/10.1126/science.1245085

    [16] H. T. Chorsi et al. Widely tunable optical and thermal properties of Dirac semimetal Cd3As2. Adv. Opt. Mater., 8, 1901192(2020). https://doi.org/10.1002/adom.201901192

    [17] Q. Wang et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett., 17, 834-841(2017). https://doi.org/10.1021/acs.nanolett.6b04084

    [18] Y. Meng et al. Three-dimensional Dirac semimetal thin-film absorber for broadband pulse generation in the near-infrared. Opt. Lett., 43, 1503(2018).

    [19] K. J. A. Ooi et al. Nonlinear plasmonics of three-dimensional Dirac semimetals. APL Photonics, 4, 034402(2019).

    [20] Y. K. Yang et al. Electrical transport and optical properties of Cd3As2 thin films. Chin. Phys. B, 28, 107502(2019). https://doi.org/10.1088/1674-1056/ab3a91

    [21] Y. Liu et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater., 7, e221(2015). https://doi.org/10.1038/am.2015.110

    [22] C. Shekhar et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys., 11, 645-649(2015).

    [23] Z. Dai et al. High mobility 3D Dirac semimetal (Cd3As2) for ultrafast photoactive terahertz photonics. Adv. Funct. Mater., 31, 2011011(2021). https://doi.org/10.1002/adfm.202011011

    [24] W. Zhang et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett., 106, 156808(2011). https://doi.org/10.1103/PhysRevLett.106.156808

    [25] H. Li et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun., 7, 10301(2016). https://doi.org/10.1038/ncomms10301

    [26] C. Liu et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B - Condens. Matter Mater. Phys., 81, 041307(2010).

    [27] S. Suetsugu et al. Giant orbital diamagnetism of three-dimensional Dirac electrons in Sr3PbO antiperovskite. Phys. Rev. B, 103, 115117(2021). https://doi.org/10.1103/PhysRevB.103.115117

    [28] Z. Wang et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B - Condens. Matter Mater. Phys., 88, 125427(2013). https://doi.org/10.1103/PhysRevB.88.125427

    [29] X. Wan et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B - Condens. Matter Mater. Phys., 83, 205101(2011).

    [30] Z. Wang et al. Dirac semimetal and topological phase transitions in A 3Bi (A=Na, K, Rb). Phys. Rev. B - Condens. Matter Mater. Phys., 85, 195320(2012).

    [31] L. Fu, C. L. Kane. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 100, 096407(2008).

    [32] S. Kovalev et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2. Nat. Commun., 11, 2451(2020). https://doi.org/10.1038/s41467-020-16133-8

    [33] J. Lim et al. Maximal terahertz emission in high harmonic generation from 3D Dirac semimetals. Commun. Phys., 4, 4-10(2021).

    [34] I. Crassee et al. 3D Dirac semimetal Cd3As2: a review of material properties. Phys. Rev. Mater., 2, 120302(2018). https://doi.org/10.1103/PhysRevMaterials.2.120302

    [35] O. V. Kotov, Y. E. Lozovik. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B, 93, 235417(2016).

    [36] M. Ali et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem., 53, 4062-4067(2014). https://doi.org/10.1002/chin.201426003

    [37] A. Pietraszko, K. Łukaszewicz. Thermal expansion and phase transitions of Cd3As2 and Zn3As2. Phys. Status Solidi, 18, 723-730(1973). https://doi.org/10.1002/pssa.2210180234

    [38] G. A. Steigmann, J. Goodyear. The crystal structure of Cd3As2. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 24, 1062-1067(1968). https://doi.org/10.1107/S0567740868003705

    [39] B. Xu et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B, 93, 121110(2016).

    [40] A. B. Sushkov et al. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7. Phys. Rev. B - Condens. Matter Mater. Phys., 92, 241108(2015). https://doi.org/10.1103/PhysRevB.92.241108

    [41] D. Neubauer et al. Interband optical conductivity of the [001]-oriented Dirac semimetal Cd3As2. Phys. Rev. B, 93, 121202(2016). https://doi.org/10.1103/PhysRevB.93.121202

    [42] T. Liang et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater., 14, 280-284(2015). https://doi.org/10.1038/nmat4143

    [43] E. Zhang et al. Magnetotransport properties of Cd3As2 nanostructures. ACS Nano, 9, 8843-8850(2015). https://doi.org/10.1021/acsnano.5b02243

    [44] C. Li et al. Synthesis and photovoltaic properties of Cd3As2 faceted nanoplates and nano-octahedrons. Cryst. Growth Design, 15, 3264-3270(2015). https://doi.org/10.1021/acs.cgd.5b00399

    [45] M. Uchida et al. Quantum hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun., 8, 2274(2017). https://doi.org/10.1038/s41467-017-02423-1

    [46] M. Yang et al. Ultraviolet to long-wave infrared photodetectors based on a three-dimensional Dirac semimetal/organic thin film heterojunction. J. Phys. Chem. Lett., 10, 3914-3921(2019).

    [47] K. Zhang et al. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Adv., 7, 17689-17696(2017). https://doi.org/10.1039/C7RA02847D

    [48] W. Zhuang, Z. Chen, X. Wang. Large-area fabrication of 2D layered topological semimetal films and emerging applications. Adv. Phys. X, 7, 2034529(2022).

    [49] T. Schumann et al. Observation of the quantum hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 120, 16801(2018). https://doi.org/10.1103/PhysRevLett.120.016801

    [50] Y. Yan et al. Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Res., 14, 3379-3385(2021). https://doi.org/10.1007/s12274-021-3367-2

    [51] J. J. Dubowski, D. F. Williams. Growth of polycrystalline Cd3As2 films on room temperature substrates by a pulsed-laser evaporation technique. Thin Solid Films, 117, 289-297(1984). https://doi.org/10.1016/0040-6090(84)90359-6

    [52] Y. F. Wu et al. Dirac semimetal heterostructures: 3D Cd3As2 on 2D graphene. Adv. Mater., 30, 1707547(2018). https://doi.org/10.1002/adma.201707547

    [53] R. Sankar et al. Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2. Sci. Rep., 5, 12966(2015). https://doi.org/10.1038/srep12966

    [54] H.-U. Krebs et al. Pulsed laser deposition (PLD)—a versatile thin film technique. Adv. Solid State Phys., 43, 505-518(2003).

    [55] J. Schou. Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film. Appl. Surf. Sci., 255, 5191-5198(2009).

    [56] S. M. Rossnagel. Thin film deposition with physical vapor deposition and related technologies. J. Vac. Sci. Technol. A Vac. Surf. Film, 21, S74-S87(2003).

    [57] X. Zhang et al. High-performance photodetector based on a 3D Dirac semimetal Cd 3 As 2 /Tungsten disulfide (WS 2) van Der Waals heterojunction. Adv. Photonics Res., 2, 2000194(2021).

    [58] Z. G. Chen et al. Scalable growth of high mobility Dirac semimetal Cd3As2 microbelts. Nano Lett., 15, 5830-5834(2015). https://doi.org/10.1021/acs.nanolett.5b01885

    [59] A. Szczerbakow, K. Durose. Self-selecting vapour growth of bulk crystals—principles and applicability. Progr. Cryst. Growth Charact. Mater., 51, 81-108(2005).

    [60] M. Goyal et al. Thickness dependence of the quantum hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater., 6, 026105(2018). https://doi.org/10.1063/1.5016866

    [61] G. Liang et al. Strain-induced circular photogalvanic current in Dirac semimetal Cd3As2 films epitaxied on a GaAs(111)B substrate. Nanoscale, 14, 2383-2392(2022). https://doi.org/10.1039/D1NR05812F

    [62] Y. Miyazaki et al. Quantum oscillations from Fermi arc surface states in Cd3As2 submicron wires. Phys. Rev. Res., 4, L022002(2022). https://doi.org/10.1103/PhysRevResearch.4.L022002

    [63] W. Yu et al. Evidence of decoupling of surface and bulk states in Dirac semimetal Cd3As2. Nanotechnology, 33, 415002(2022). https://doi.org/10.1088/1361-6528/ac7c25

    [64] T. Schumann et al. Observation of the quantum hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. Lett., 120, 016801(2018). https://doi.org/10.1103/PhysRevLett.120.016801

    [65] S. N. Ogugua, O. M. Ntwaeaborwa, H. C. Swart. Latest development on pulsed laser deposited thin films for advanced luminescence applications. Coatings, 10, 1-22(2020).

    [66] L. M. Kukreja et al. Pulsed laser deposition of plasmonic-metal nanostructures. J. Phys. D. Appl. Phys., 47, 034015(2014).

    [67] Y. Bleu et al. Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front. Chem., 6, 572(2018).

    [68] K. Q. Lin, S. Bange, J. M. Lupton. Quantum interference in second-harmonic generation from monolayer WSe2. Nat. Phys., 15, 242-246(2019). https://doi.org/10.1038/s41567-018-0384-5

    [69] R. Zhou et al. Engineering the harmonic generation in graphene. Mater. Today Phys., 23, 100649(2022).

    [70] J. Zhang et al. Second harmonic generation in 2D layered materials. 2D Mater., 7, 042002(2020).

    [71] Y. Wang et al. Second harmonic generation spectroscopy on two-dimensional materials [invited]. Opt. Mater. Express, 9, 1136(2019).

    [72] L. Bonacina et al. Harmonic generation at the nanoscale. J. Appl. Phys., 127, 230901(2020).

    [73] H. Ma et al. Rich information on 2D materials revealed by optical second harmonic generation. Nanoscale, 12, 22891-22903(2020).

    [74] A. Autere et al. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1705963(2018).

    [75] X. Wen, Z. Gong, D. Li. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat, 1, 317-337(2019).

    [76] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [77] G. Baffou, R. Quidant. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev., 7, 171-187(2013).

    [78] N. C. Panoiu et al. Nonlinear optics in plasmonic nanostructures. J. Opt., 20, 083001(2018).

    [79] D. Marinica et al. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle Dimer. Nano Lett., 12, 1333-1339(2012).

    [80] S. Bidault, M. Mivelle, N. Bonod. Dielectric nanoantennas to manipulate solid-state light emission. J. Appl. Phys., 126, 094104(2019).

    [81] K. Ullah et al. Engineering the optical properties of dielectric nanospheres by resonant modes. Nanotechnology, 29, 505204(2018).

    [82] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [83] K. S. Novoselov et al. Electric field in atomically thin carbon films. Science, 306, 666-669(2004).

    [84] R. Ma, D. S. Sutherland, Y. Shi. Harmonic generation in transition metal dichalcogenides and their heterostructures. Mater. Today, 50, 570-586(2021).

    [85] R. A. Ganeev et al. Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals. Opt. Commun., 229, 403-412(2004). https://doi.org/10.1016/j.optcom.2003.10.046

    [86] P. Bharadwaj, B. Deutsch, L. Novotny. Optical antennas. Adv. Opt. Photonics, 1, 438(2009).

    [87] P. Y. Chen et al. Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics, 1, 221-233(2012).

    [88] R. W. Boyd, Z. Shi, I. De Leon. The third-order nonlinear optical susceptibility of gold. Opt. Commun., 326, 74-79(2014).

    [89] J. Renger, R. Quidant, L. Novotny. Enhanced nonlinear response from metal surfaces. Opt. Express, 19, 1777(2011).

    [90] R. W. Boyd. Nonlinear Optics(2020).

    [91] K. Ullah et al. Harmonic generation in low-dimensional materials. Adv. Opt. Mater., 10, 2101860(2022).

    [92] A. Autere et al. Nonlinear optics with 2D layered materials. Adv. Mater., 30, 1-24(2018).

    [93] K. Ullah et al. Third harmonic generation in Dirac semimetal Cd3As2. Appl. Phys. Lett., 117, 011102(2020). https://doi.org/10.1063/5.0010707

    [94] J. Lim et al. Efficient generation of extreme terahertz harmonics in three-dimensional Dirac semimetals. Phys. Rev. Res., 2, 043252(2020).

    [95] B. Cheng et al. Efficient terahertz harmonic generation with coherent acceleration of electrons in the Dirac semimetal Cd3As2. Phys. Rev. Lett., 124, 117402(2020). https://doi.org/10.1103/PhysRevLett.124.117402

    [96] T. Zhang et al. Optical Kerr effect and third harmonic generation in topological Dirac/Weyl semimetal. Opt. Express, 27, 38270(2019).

    [97] Y. Gao, B. Ge. Second harmonic generation in Dirac/Weyl semimetals with broken tilt inversion symmetry. Opt. Express, 29, 6903(2021).

    [98] L. Ju et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 6, 630-634(2011).

    [99] H. Yan et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol., 7, 330-334(2012).

    [100] A. Chanana et al. Manifestation of kinetic inductance in terahertz Plasmon resonances in thin-film Cd3As2. ACS Nano, 13, 4091-4100(2019). https://doi.org/10.1021/acsnano.8b08649

    [101] S. Das Sarma, Q. Li. Intrinsic plasmons in two-dimensional Dirac materials. Phys. Rev. B - Condens. Matter Mater. Phys., 87, 235418(2013).

    [102] T. Low, P. Avouris. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8, 1086-1101(2014).

    [103] J. Hofmann, S. Das Sarma. Plasmon signature in Dirac-Weyl liquids. Phys. Rev. B - Condens. Matter Mater. Phys., 91, 241108(2015).

    [104] D. E. Kharzeev, R. D. Pisarski, H. U. Yee. Universality of plasmon excitations in Dirac semimetals. Phys. Rev. Lett., 115, 236402(2015).

    [105] H. Chen et al. Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals. Opt. Mater. Express, 7, 3397(2017).

    [106] X. He et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett., 46, 472(2021).

    [107] Y. Su et al. Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets. Opt. Mater. Express, 8, 884(2018).

    [108] X. He et al. Tunable terahertz Dirac-semimetal hybrid plasmonic waveguides. Opt. Mater. Express, 12, 73(2022).

    [109] Z. Lu, W. Zhao. Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B, 29, 1490(2012).

    [110] S. A. Mikhailov, K. Ziegler. New electromagnetic mode in graphene. Phys. Rev. Lett., 99, 016803(2007).

    [111] M. Bordag, I. G. Pirozhenko. Transverse-electric surface plasmon for graphene in the Dirac equation model. Phys. Rev. B - Condens. Matter Mater. Phys., 89, 035421(2014).

    [112] S. Roy, P. C. Subramaniam. TE-polarized surface plasmon Polaritons in metal waveguides bounded by self-focusing and self-defocusing media. Opt. Lett., 17, 911(1992).

    [113] W. Zhang et al. Ultrafast photocarrier dynamics in a 3D Dirac semimetal Cd3As2 film studied with terahertz spectroscopy. Appl. Phys. Lett., 114, 221102(2019). https://doi.org/10.1063/1.5086085

    [114] X. Y. He, J. Tao, B. Meng. Analysis of graphene TE surface plasmons in the terahertz regime. Nanotechnology, 24, 345203(2013).

    [115] M. Jablan, H. Buljan, M. Soljačić. Transverse electric plasmons in bilayer graphene. Opt. Express, 19, 11236(2011).

    [116] M. Y. Musa et al. Confined transverse electric phonon polaritons in hexagonal Boron Nitrides. 2D Mater., 5, 015018(2018).

    [117] D. Drosdoff, A. D. Phan, L. M. Woods. Transverse electric mode for near-field radiative heat transfer in graphene-metamaterial systems. Adv. Opt. Mater., 2, 1038-1042(2014).

    [118] Y. V. Bludov et al. Nonlinear TE-polarized surface polaritons on graphene. Phys. Rev. B - Condens. Matter Mater. Phys., 89, 035406(2014).

    [119] H. Xiong, Q. A. Shen. Thermally and electrically dual-tunable absorber based on Dirac semimetal and strontium titanate. Nanoscale, 12, 14598-14604(2020).

    [120] H. Xiong, D. Li, H. Zhang. Broadband terahertz absorber based on hybrid Dirac semimetal and water. Opt. Laser Technol., 143, 107274(2021).

    [121] H. Xiong et al. Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal. Opt. Express, 28, 15744(2020).

    [122] X. He et al. 3D Dirac semimetal supported tunable TE modes. Ann. Phys., 534, 1-8(2022).

    [123] R. D. Kekatpure et al. Phase-coupled plasmon-induced transparency. Phys. Rev. Lett., 104, 243902(2010).

    [124] S. Zhang et al. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [125] J. T. Liu, Z. Liu. Robust tunable plasmon induced transparency in coupled-resonance finite array of metasurface nanostructure. Sci. Rep., 11, 1221(2021).

    [126] S. Paul, M. Ray. Multispectral switching using Fano resonance and plasmon-induced transparency in a plasmonic waveguide-coupled resonator system. Plasmonics, 14, 1113-1122(2019).

    [127] Z. Li et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express, 19, 8912(2011).

    [128] S. Yang et al. Enhanced second-order nonlinearity and tunable plasmon induced transparency in noncoplanar Dirac semimetal system. Solid State Commun., 340, 114510(2021).

    [129] H. Chen et al. Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials. Opt. Commun., 423, 57-62(2018).

    [130] H. Chen et al. Broadband tunable terahertz plasmon-induced transparency in Dirac semimetals. Opt. Laser Technol., 104, 210-215(2018).

    [131] Y. Li, X. Zhai, L. Wang. Dynamically tunable plasmon-induced absorption in Dirac semimetal waveguide. Opt. Commun., 437, 246-250(2019).

    [132] C. P. Weber. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys., 129, 070901.

    [133] C. P. Weber et al. Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals. J. Appl. Phys., 122, 223102(2017).

    [134] C. Zhu et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [135] J. Liu et al. Semimetals for high-performance photodetection. Nat. Mater., 19, 830-837(2020).

    [136] C. P. Weber et al. Transient reflectance of photoexcited Cd3As2. Appl. Phys. Lett., 106, 1-5(2015). https://doi.org/10.1063/1.4922528

    [137] C. Zhu et al. Broadband hot-carrier dynamics in three-dimensional Dirac semimetal Cd3As2. Appl. Phys. Lett., 111, 2-6(2017). https://doi.org/10.1063/1.4985688

    [138] W. Lu et al. Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac semimetal Cd3As2. Phys. Rev. B, 95, 024303(2017). https://doi.org/10.1103/PhysRevB.95.024303

    [139] W. Lu et al. Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal Cd3As2. Phys. Rev. B, 98, 104310(2018). https://doi.org/10.1103/PhysRevB.98.104310

    [140] N. Landy et al. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [141] B. Wang et al. A novel ultrathin and broadband microwave metamaterial absorber. J. Appl. Phys., 116, 094504(2014).

    [142] H. Tao et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B - Condens. Matter Mater. Phys., 78, 241103(2008).

    [143] J. Xu et al. Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express, 24, 25742(2016).

    [144] X. Lu, L. Zhang, T. Zhang. Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt. Express, 23, 20715(2015).

    [145] N. Liu et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [146] G. Li et al. Novel plasmonic resonance sensor based on an infrared perfect absorber. J. Phys. D. Appl. Phys., 45, 205102(2012).

    [147] J. He et al. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express, 23, 6083(2015).

    [148] Y. Qu et al. Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films. Adv. Opt. Mater., 4, 480-486(2016).

    [149] Y. Gong et al. Coherent emission of light using stacked gratings. Phys. Rev. B - Condens. Matter Mater. Phys., 87, 205121(2013).

    [150] X. Liu et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [151] Z. Song, B. Zhang. Wide-angle polarization-insensitive transparency of a continuous opaque metal film for near-infrared light. Opt. Express, 22, 6519(2014).

    [152] S. Fan, J. D. Joannopoulos. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B - Condens. Matter Mater. Phys., 65, 235112(2002).

    [153] G. D. Liu et al. A high-performance refractive index sensor based on Fano resonance in Si split-ring metasurface. Plasmonics, 13, 15-19(2018).

    [154] M. Chen et al. Dynamically tunable polarization-independent terahertz absorber based on bulk Dirac semimetals. OSA Contin., 2, 2477(2019).

    [155] H. Lin et al. Graphene multilayer photonic metamaterials: fundamentals and applications. Adv. Mater. Technol., 6, 1-26(2021).

    [156] G.-D. Liu et al. Dirac semimetals based tunable narrowband absorber at terahertz frequencies. Opt. Express, 26, 11471(2018).

    [157] L. Dai et al. Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals. Opt. Mater. Express, 8, 3238(2018).

    [158] Z. Wang et al. Ultrahigh-Q tunable terahertz absorber based on bulk Dirac semimetal with surface lattice resonance. Photonics, 9, 22(2022).

    [159] J. Wang, X. Wan, Y. Jiang. Tunable triple-band terahertz absorber based on bulk-Dirac-semimetal metasurface. IEEE Photonics J., 13, 1-5(2021).

    [160] H. Liu, P. Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 452, 728-731(2008).

    [161] F. Wu et al. Control on surface plasmon polaritons propagation properties by continuously moving a nanoparticle along a silver nanowire waveguide. Sci. Rep., 6, 37512(2016).

    [162] L. M. Wang et al. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films. Phys. Rev. B - Condens. Matter Mater. Phys., 86, 165408(2012).

    [163] F. Van Beijnum et al. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature, 492, 411-414(2012).

    [164] Z. Xue et al. Ultraviolet/visible quasicylindrical waves on semimetal Cd3As2 nanoplates. Adv. Photonics Res., 3, 2100354(2022). https://doi.org/10.1002/adpr.202100354

    [165] J. Huang et al. Switchable coding metasurface for flexible manipulation of terahertz wave based on Dirac semimetal. Results Phys., 33, 105204(2022).

    [166] C. Della Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 13, 1115-1121(2014).

    [167] T. J. Cui, S. Liu, L. Zhang. Information metamaterials and metasurfaces. J. Mater. Chem. C, 5, 3644-3668(2017).

    [168] T. J. Cui et al. Coding Metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218-e218(2014).

    [169] C. Zhou et al. Graphene-embedded coding metasurface for dynamic terahertz manipulation. Optik, 216, 164937(2020).

    [170] Y. M. Qing, H. F. Ma, T. J. Cui. Multifunctional space-time-coding amplitude modulated graphene metasurfaces. J. Opt. Soc. Am. B, 38, 3206(2021).

    [171] J. Ma et al. Experimental progress on layered topological semimetals. 2D Mater., 6, 032001(2019).

    [172] C. Zhang et al. Room-temperature chiral charge pumping in Dirac semimetals. Nat. Commun., 8, 13741(2017).

    [173] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [174] U. Keller et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber. Opt. Lett., 17, 505-507(1992).

    [175] U. Keller et al. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [176] Y. Yang, F. Xiu. Broadband photodetection of Cd3As2: review and perspectives. Mater. Today Electron., 2, 100007(2022). https://doi.org/10.1016/j.mtelec.2022.100007

    [177] X. Zhang et al. 3D Dirac semimetal Cd3As2/CuPc heterojunction for promoted visible-infrared photo-detection. Opt. Mater., 111, 110699(2021). https://doi.org/10.1016/j.optmat.2020.110699

    [178] C. Liu et al. A review of graphene plasmons and its combination with metasurface. J. Korean Ceram. Soc., 54, 349-365(2017).

    [179] M. Yang et al. Enhanced performance of wideband room temperature photodetector based on Cd3As2 thin film/pentacene heterojunction. ACS Photonics, 5, 3438-3445(2018). https://doi.org/10.1021/acsphotonics.8b00727

    Renlong Zhou, Kaleem Ullah, Naveed Hussain, Mohammed M. Fadhali, Sa Yang, Qiawu Lin, Muhammad Zubair, Muhammad Faisal Iqbal. Recent advances in photonics of three-dimensional Dirac semimetal Cd3As2[J]. Advanced Photonics Nexus, 2022, 1(2): 024001
    Download Citation