• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 4, 343 (2009)
CHAO-WEI CHEN1, TIFFANY R. BLACKWELL2, RENEE NAPHAS1, PAUL T. WINNARD JR.2, VENU RAMAN2, KRISTINE GLUNDE2、*, and YU CHEN1
Author Affiliations
  • 1Fischell Department of Bioengineering and Electrical and Computer Engineering, University of Maryland College Park, MD 20742, USA
  • 2In Vivo Cellular and Molecular Imaging Center (ICMIC) Department of Radiology, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
  • show less
    DOI: Cite this Article
    CHAO-WEI CHEN, TIFFANY R. BLACKWELL, RENEE NAPHAS, PAUL T. WINNARD JR., VENU RAMAN, KRISTINE GLUNDE, YU CHEN. DEVELOPMENT OF NEEDLE-BASED MICROENDOSCOPY FOR FLUORESCENCE MOLECULAR IMAGING OF BREAST TUMOR MODELS[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 343 Copy Citation Text show less
    References

    [1] “Cancer Facts & Figures 2009,” American Cancer Society, p. 4 (2009).

    [2] R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni Jr., S. I. Finkelstein, M. J. Shepard, “Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: False-negative and histologic underestimation rates after long-term follow-up,” Radiology 210, 799–805 (1999).

    [3] V. I. Shah, U. Raju, D. Chitale, V. Deshpande, N. Gregory, V. Strand, “False-negative core needle biopsies of the breast: An analysis of clinical, radiologic, and pathologic findings in 27 consecutive cases of missed breast cancer,” Cancer 97, 1824– 1831 (2003).

    [4] M. J. Chare, C. I. Flowers, C. J. O’Brien, A. Dawson, “Image-guided core biopsy in patients with breast disease,” Br. J. Surg. 83, 1415–1416 (1996).

    [5] H. I. Vargas, M. P. Vargas, K. D. Gonzalez, R. Venegas, M. Canet, M. Burla, K. Eldrageely, I. Khalkhali, “Diagnosis of palpable breast masses: Ultrasound-guided large core biopsy in a multidisciplinary setting,” Am. Surg. 70, 867–871 (2004).

    [6] J. Frayne, G. F. Sterrett, J. Harvey, P. Goodwin, J. Townsend, D. Ingram, R. W. Parsons, “Stereotactic 14 gauge core-biopsy of the breast: Results from 101 patients,” Aust. N. Z. J. Surg. 66, 585– 591 (1996).

    [7] A. J. Evans, J. P. Whitlock, H. C. Burrell, S. E. Pinder, I. O. Ellis, J. G. Geraghty, A. H. Lee, A. R. Wilson, “A comparison of 14 and 12 gauge needles for core biopsy of suspicious mammographic calcification,” Br. J. Radiol. 72, 1152–1154 (1999).

    [8] B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast,” Radiology 218, 261–266 (2001).

    [9] V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Nat. Acad. Sci. U.S.A. 97, 2767–2772 (2000).

    [10] X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, B. Chance, “In vivo continuous-wave optical breast imaging enhanced with indocyanine green,” Med. Phys. 30, 1039–1047 (2003).

    [11] Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, D. A. Boas, “Coregistered tomographic X-ray and optical breast imaging: Initial results,” J. Biomed. Opt. 10, 024033 (2005).

    [12] R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki et al., “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallelplate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).

    [13] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).

    [14] C. Zhu, E. Burnside, G. Sisney, L. Salkowski, J. Harter, B. Yu, N. Ramanujam, “Fluorescence spectroscopy: An adjunct diagnostic tool to image guided core needle biopsy of the breast,” IEEE Trans. Biomed. Eng. (2009).

    [15] Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).

    [16] A. Alimova, A. Katz, V. Sriramoju, Y. Budansky, A. A. Bykov, R. Zeylikovich, R. R. Alfano, “Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection,” J. Biomed. Opt. 12, 014004 (2007).

    [17] I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: Preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

    [18] S. A. Boppart, W. Luo, D. L. Marks, K. W. Singletary, “Optical coherence tomography: Feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).

    [19] P. L. Hsiung, D. R. Phatak,Y. Chen, A. D. Aguirre, J. G. Fujimoto, J. L. Connolly, “Benign and malignant lesion in the human breast depicted with ultrahigh resolution and dimensional optical coherence tomography,” Radiology 244, 865–874 (2007).

    [20] B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13, 014014 (2008).

    [21] E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham et al., “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: Feasibility study,” Radiology 246, 734– 741 (2008).

    [22] C. Bremer, V. Ntziachristos, B. Weitkamp, G. Theilmeier, W. Heindel, R. Weissleder, “Optical imaging of spontaneous breast tumors using protease sensing ’smart’ optical probes,” Invest. Radiol. 40, 321–327 (2005).

    [23] Y. Hama, Y. Koyama, Y. Urano, P. L. Choyke, H. Kobayashi, “Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity,” Breast Cancer Res. Treat. 103, 23–28 (2007).

    [24] R. E. Lenkinski, M. Ahmed, A. Zaheer, J. V. Frangioni, S. N. Goldberg, “Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer,” Acad. Radiol. 10, 1159–1164 (2003).

    [25] C. Li, T. R. Greenwood, K. Glunde, “Glucosaminebound near-infrared fluorescent probes with lysosomal specificity for breast tumor imaging,” Neoplasia 10, 389–398 (2008).

    [26] A. Parrish, E. Halama, M. T. Tilli, M. Freedman, P. A. Furth, “Reflectance confocal microscopy for characterization of mammary ductal structures and development of neoplasia in genetically engineered mouse models of breast cancer,” J. Biomed. Opt. 10, 051602 (2005).

    [27] L. R. Bickford, G. Agollah, R. Drezek, T. K. Yu, “Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy,” Breast Cancer Res. Treat. in press (2009).

    [28] D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Res. 65, 8766– 8773 (2005).

    [29] M.W. Conklin, P. P. Provenzano,K.W. Eliceiri, R. Sullivan, P. J. Keely, “Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast,” Cell Biochem. Biophys. 53, 145–157 (2009).

    [30] M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12, 051901 (2007).

    [31] C. Zeng, S. Vangveravong, J. Xu, K. C. Chang, R. S. Hotchkiss, K. T. Wheeler, D. Shen, Z. P. Zhuang, H. F. Kung, R. H. Mach, “Subcellular localization of sigma-2 receptors in breast cancer cells using twophoton and confocal microscopy,” Cancer Res. 67, 6708–6716 (2007).

    [32] A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Opt. Lett. 32, 385–387 (2007).

    [33] N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76, 064301 (2005).

    [34] R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).

    [35] C. Lubawy, N. Ramanujam, “Endoscopically compatible near-infrared photon migration probe,” Opt. Lett. 29, 2022–2024 (2004).

    [36] B. Yu, E. S. Burnside, G. A. Sisney, J. M. Harter, C. Zhu, A. H. Dhalla, N. Ramanujam, “Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing image guided core-needle biopsy,” Opt. Express 15, 7335–7350 (2007).

    [37] R. Weissleder, “Molecular imaging in cancer,” Science 312, 1168–1171 (2006).

    [38] D. Piwnica-Worms, D. P. Schuster, J. R. Garbow, “Molecular imaging of host-pathogen interactions in intact small animals,” Cell. Microbiol. 6, 319–331 (2004).

    [39] T. F. Massoud, S. S. Gambhir, “Molecular imaging in living subjects: Seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003).

    [40] R. G. Blasberg, “Molecular imaging and cancer,” Mol. Cancer Ther. 2, 335–343 (2003).

    [41] J. F. Lovell, G. Zheng, “Activatable smart probes for molecular optical imaging and therapy,” J. Innov. Opt. Health Sci. 1, 45–61 (2008).

    [42] S. Achilefu, “Lighting up tumors with receptorspecific optical molecular probes,” Technol. Cancer Res. Treat. 3, 393–409 (2004).

    [43] R. Weissleder, M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452, 580–589 (2008).

    [44] C. Bremer, C. H. Tung, A. Bogdanov, Jr., R. Weissleder, “Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes,” Radiology 222, 814–848 (2002).

    [45] R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with proteaseactivated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).

    [46] S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).

    [47] Y. Chen, C. P. Mu, X. Intes, D. Blessington, B. Chance, “Near-infrared phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).

    [48] V. Ntziachristos, C. H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757– 760 (2002).

    [49] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).

    [50] H. Wang, T. B. Huff, Y. Fu, K. Y. Jia, J. X. Cheng, “Increasing the imaging depth of coherent anti- Stokes Raman scattering microscopy with a miniature microscope objective,” Opt. Lett. 32, 2212–2214 (2007).

    [51] J. C. Jung, M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).

    [52] P. Kim, M. Puoris’haag, D. Cote, C. P. Lin, S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13, 010501 (2008).

    [53] M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91, 1908–1912 (2004).

    [54] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nat. Biotechnol. 22, 1567–1572 (2004).

    [55] P. T. Winnard, Jr., J. B. Kluth, V. Raman, “Noninvasive optical tracking of red fluorescent proteinexpressing cancer cells in a model of metastatic breast cancer,” Neoplasia 8, 796–806 (2006).

    [56] F. C. McNeillie, J. Thomson, I. S. Ruddock, “The imaging properties of gradient index optical fibres,” Eur. J. Phys. 25, 479–487 (2004).

    [57] T. Q. Xie, S. G. Guo, Z. P. Chen, D. Mukai, M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14, 3238–3246 (2006).

    [58] K. Glunde, C. A. Foss, T. Takagi, F. Wildes, Z. M. Bhujwalla, “Synthesis of 6’-O-lissamine-rhodamine B-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors,” Bioconjug. Chem. 16, 843–851 (2005).

    [59] S. H. Parker, J. D. Lovin,W. E. Jobe, B. J. Burke, K. D. Hopper, W. F. Yakes, “Nonpalpable breast lesions: Stereotactic automated large-core biopsies,” Radiology 180, 403–407 (1991).

    [60] S. H. Parker, J. D. Lovin,W. E. Jobe, J. M. Luethke, K. D. Hopper, W. F. Yakes, B. J. Burke, “Stereotactic breast biopsy with a biopsy gun,” Radiology 176, 741–747 (1990).

    [61] L. E. Philpotts, N. A. Shaheen, D. Carter, R. C. Lange, C. H. Lee, “Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun,” Am. J. Roentgenol. 172, 683–687 (1999).

    [62] A. F. Gmitro, D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).

    [63] K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44, 1792–1797 (2005).

    [64] C. Liang, K. B. Sung, R. R. Richards-Kortum, M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603–4610 (2002).

    [65] T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005).

    [66] S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, “Forwardimaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618–1620 (1997).

    [67] X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25, 1520–1522 (2000).

    [68] S. Han, M. V. Sarunic, J. Wu, M. Humayun, C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13, 020505 (2008).

    [69] U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).

    [70] K. Glunde, A. P. Pathak, Z. M. Bhujwalla, “Molecular-functional imaging of cancer: To image and imagine,” Trends Mol. Med. 13, 287–297 (2007).

    CHAO-WEI CHEN, TIFFANY R. BLACKWELL, RENEE NAPHAS, PAUL T. WINNARD JR., VENU RAMAN, KRISTINE GLUNDE, YU CHEN. DEVELOPMENT OF NEEDLE-BASED MICROENDOSCOPY FOR FLUORESCENCE MOLECULAR IMAGING OF BREAST TUMOR MODELS[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 343
    Download Citation