• Photonics Insights
  • Vol. 2, Issue 2, R05 (2023)
Qiannan Jia1、2, Wei Lyu1、2, Wei Yan1、2、*, Weiwei Tang1、2、3、*, Jinsheng Lu4、*, and Min Qiu1、2、*
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China
  • 3College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
  • 4Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
  • show less
    DOI: 10.3788/PI.2023.R05 Cite this Article Set citation alerts
    Qiannan Jia, Wei Lyu, Wei Yan, Weiwei Tang, Jinsheng Lu, Min Qiu. Optical manipulation: from fluid to solid domains[J]. Photonics Insights, 2023, 2(2): R05 Copy Citation Text show less
    References

    [1] J. Kepler. Ad vitellionem paralipomena(1968).

    [2] J. D. Jackson. Classical Electrodynamics(1999).

    [3] M. Baudoin, J.-L. Thomas. Acoustic tweezers for particle and fluid micromanipulation. Annu. Rev. Fluid Mech., 52, 205(2019).

    [4] J. Chen et al. Optical pulling force. Nat. Photonics, 5, 531(2011).

    [5] W. Lyu et al. Light-induced in-plane rotation of microobjects on microfibers. Laser Photonics Rev., 16, 2100561(2022).

    [6] J. Poynting. XXXIX. Radiation pressure. Lond. Edinb. Dublin Philos. Mag. J. Sci., 9, 393(1905).

    [7] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156(1970).

    [8] A. Ashkin et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288(1986).

    [9] R. Feynman. There’s plenty of room at the bottom. Eng. Sci. Mag., 23, 22(1960).

    [10] C. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater., 6, 1800005(2018).

    [11] A. Ashkin. Applications of laser radiation pressure. Science, 210, 1081(1980).

    [12] P.-F. Cohadon, A. Heidmann, M. Pinard. Cooling of a mirror by radiation pressure. Phys. Rev. Lett., 83, 3174(1999).

    [13] D. Baresch, J.-L. Thomas, R. Marchiano. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett., 116, 024301(2016).

    [14] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349(2011).

    [15] G. Volpe et al. Surface plasmon radiation forces. Phys. Rev. Lett., 96, 238101(2006).

    [16] S. Mandal, X. Serey, D. Erickson. Nanomanipulation using silicon photonic crystal resonators. Nano Lett., 10, 99(2010).

    [17] Y. Shi et al. Optical manipulation with metamaterial structures. Appl. Phys. Rev., 9, 031303(2022).

    [18] O. Preining. Photophoresis(1966).

    [19] H. Horvath. Photophoresis–a forgotten force?. Kona Powder Part. J., 31, 181(2014).

    [20] G. Hidy, J. Brock. Photophoresis and the descent of particles into the lower stratosphere. J. Geophys. Res., 72, 455(1967).

    [21] M. Lewittes, S. Arnold, G. Oster. Radiometric levitation of micron sized spheres. Appl. Phys. Lett., 40, 455(1982).

    [22] H. Li et al. Optical pulling forces and their applications. Adv. Opt. Photonics, 12, 288(2020).

    [23] R. Piazza, A. Parola. Thermophoresis in colloidal suspensions. J. Phys. Condens. Matter, 20, 153102(2008).

    [24] J. R. Melcher. Electric fields and moving media. IEEE Trans. Educ., 17, 100(1974).

    [25] J. C. Ndukaife et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol., 11, 53(2016).

    [26] R. A. Bowling. A theoretical review of particle adhesion. Particles Surfaces, 129(1988).

    [27] M. A. Day. The no-slip condition of fluid dynamics. Erkenntnis, 33, 285(1990).

    [28] W. Zapka, W. Ziemlich, A. C. Tam. Efficient pulsed laser removal of 0.2 µm sized particles from a solid surface. Appl. Phys. Lett., 58, 2217(1991).

    [29] A. C. Tam et al. Laser-cleaning techniques for removal of surface particulates. J. Appl. Phys., 71, 3515(1992).

    [30] G. Torr. The acoustic radiation force. Am. J. Phys., 52, 402(1984).

    [31] W. L. M. Nyborg. 11. Acoustic streaming. Phys. Acoust., 2, 265(1965).

    [32] L. Meng et al. Acoustic tweezers. J. Phys. D, 52, 273001(2019).

    [33] Y. Gu et al. Acoustofluidic holography for micro- to nanoscale particle manipulation. ACS Nano, 14, 14635(2020).

    [34] L. Zhao et al. Ultrafast ultrasound imaging of surface acoustic waves induced by laser excitation compared with acoustic radiation force. Opt. Lett., 45, 1810(2020).

    [35] J. Lu et al. Nanoscale Lamb wave–driven motors in nonliquid environments. Sci. Adv., 5, eaau8271(2019).

    [36] S. Linghu et al. Plasmon-driven nanowire actuators for on-chip manipulation. Nat. Commun., 12, 1(2021).

    [37] W. Tang et al. Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime. Light Sci. Appl., 10, 1(2021).

    [38] W. Tang et al. Light-induced vacuum micromotors based on an antimony telluride microplate. Adv. Photonics Nexus, 1, 026005(2022).

    [39] L. Landau, E. Lifshitz. Mechanics(1976).

    [40] J. C. Maxwell. A Treatise on Electricity and Magnetism, 1(1873).

    [41] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. Math. Phys. Eng. Sci., 82, 560(1909).

    [42] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [43] L. D. Landau et al. Electrodynamics of Continuous Media, 8(2013).

    [44] R. N. C. Pfeifer et al. Colloquium: momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys., 79, 1197(2007).

    [45] H. Minkowski. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachr. von Ges. Wiss. zu Göttingen, Mathematisch-Physikalische Klasse, 1908, 53(1908).

    [46] M. Abraham. Zur elektrodynamik bewegter körper. Rendiconti Circolo Matematico Palermo, 28, 1(1909).

    [47] A. Ashkin, J. Dziedzic. Radiation pressure on a free liquid surface. Phys. Rev. Lett., 30, 139(1973).

    [48] R. Loudon. Theory of the radiation pressure on dielectric surfaces. J. Mod. Opt., 49, 821(2002).

    [49] R. Jones. Radiation pressure in a refracting medium. Nature, 167, 439(1951).

    [50] R. V. Jones, J. Richards. The pressure of radiation in a refracting medium. Proc. R. Soc. London. Ser. A Math. Phys. Sci., 221, 480(1954).

    [51] G. Walker, D. Lahoz, G. Walker. Measurement of the Abraham force in a barium titanate specimen. Can. J. Phys., 53, 2577(1975).

    [52] R. V. Jones, B. Leslie. The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. London. Ser. A Math. Phys. Sci., 360, 347(1978).

    [53] M. Kristensen, J. P. Woerdman. Is photon angular momentum conserved in a dielectric medium?. Phys. Rev. Lett., 72, 2171(1994).

    [54] I. Brevik. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep., 52, 133(1979).

    [55] S. M. Barnett. Resolution of the Abraham-Minkowski dilemma. Phys. Rev. Lett., 104, 070401(2010).

    [56] Z. Mikura. Variational formulation of the electrodynamics of fluids and its application to the radiation pressure problem. Phys. Rev. A, 13, 2265(1976).

    [57] M. Nieto-Vesperinas et al. Optical forces on small magnetodielectric particles. Opt. Express, 18, 11428(2010).

    [58] S. M. Barnett. Optical angular-momentum flux. J. Opt. B Quantum Semiclassical Opt., 4, S7(2001).

    [59] S. Van Enk, G. Nienhuis. Spin and orbital angular momentum of photons. EPL, 25, 497(1994).

    [60] S. M. Barnett et al. On the natures of the spin and orbital parts of optical angular momentum. J. Opt., 18, 064004(2016).

    [61] M. V. Berry. Optical currents. J. Opt. A Pure Appl. Opt., 11, 094001(2009).

    [62] K. Volke-Sepulveda et al. Orbital angular momentum of a high-order Bessel light beam. J. Opt. B Quantum Semiclassical Opt., 4, S82(2002).

    [63] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 38, 534(2013).

    [64] D. Naidoo et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327(2016).

    [65] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115(1936).

    [66] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769(1987).

    [67] E. Higurashi et al. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl. Phys. Lett., 64, 2209(1994).

    [68] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912(2001).

    [69] A. T. O’Neil, M. J. Padgett. Rotational control within optical tweezers by use of a rotating aperture. Opt. Lett., 27, 743(2002).

    [70] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343(2011).

    [71] M. Mahamdeh, C. P. Campos, E. Schäffer. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt. Express, 19, 11759(2011).

    [72] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787(2004).

    [73] C. J. Bustamante et al. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers, 1, 25(2021).

    [74] B. Lukić et al. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett., 95, 160601(2005).

    [75] K. Berg-Sørensen, H. Flyvbjerg. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 75, 594(2004).

    [76] R. Piazza. Thermophoresis: moving particles with thermal gradients. Soft Matter, 4, 1740(2008).

    [77] Y. I. Yalamov, V. Kutukov, E. Shchukin. Theory of the photophoretic motion of the large-size volatile aerosol particle. J. Colloid Interface Sci., 57, 564(1976).

    [78] M. Knudsen. Die molekulare Wärmeleitung der Gase und der Akkommodationskoeffizient. Ann. Phys. Lpz., 339, 593(1911).

    [79] Z. Gong et al. Optical trapping and manipulation of single particles in air: principles, technical details, and applications. J. Quant. Spectrosc. Radiat. Transfer, 214, 94(2018).

    [80] R. L. Angelo. Experimental Determination of Selected Accommodation Coefficients and Experimental Determination of the Heat of Dissociation of Iodine(1951).

    [81] Z. Chen, J. Li, Y. Zheng. Heat-mediated optical manipulation. Chem. Rev., 122, 3122(2021).

    [82] M. J. Riedl. Optical Design Fundamentals for Infrared Systems(2001).

    [83] E. Hecht. Optics(2012).

    [84] T. X. Phuoc. A comparative study of the photon pressure force, the photophoretic force, and the adhesion van der Waals force. Opt. Commun., 245, 27(2005).

    [85] A. Cheremisin. Photophoresis of aerosol particles with nonuniform gas–surface accommodation in the free molecular regime. J. Aerosol Sci., 136, 15(2019).

    [86] D. Niether, S. Wiegand. Thermophoresis of biological and biocompatible compounds in aqueous solution. J. Phys. Condens. Matter, 31, 503003(2019).

    [87] L. Lin et al. Opto-thermoelectric nanotweezers. Nat. Photonics, 12, 195(2018).

    [88] S. A. Putnam, D. G. Cahill. Transport of nanoscale latex spheres in a temperature gradient. Langmuir, 21, 5317(2005).

    [89] Y. Liu et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation. ACS Nano, 12, 10383(2018).

    [90] K. Kendall. Adhesion: molecules and mechanics. Science, 263, 1720(1994).

    [91] W. Lyu et al. Nanomotion of micro-objects driven by light-induced elastic waves on solid interfaces. Phys. Rev. Appl., 19, 024049(2023).

    [92] V. G. Shvedov et al. Giant optical manipulation. Phys. Rev. Lett., 105, 118103(2010).

    [93] S. Nedev et al. Optical force stamping lithography. Nano Lett., 11, 5066(2011).

    [94] O. M. Maragò et al. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807(2013).

    [95] J.-H. Baek, S.-U. Hwang, Y.-G. Lee. Trap stiffness in optical tweezers. Mirror, 685, 61(2007).

    [96] J. R. Moffitt et al. Recent advances in optical tweezers. Annu. Rev. Biochem., 77, 205(2008).

    [97] B. Lukić et al. Motion of a colloidal particle in an optical trap. Phys. Rev. E, 76, 011112(2007).

    [98] T. Li et al. Measurement of the instantaneous velocity of a Brownian particle. Science, 328, 1673(2010).

    [99] T. Li, M. G. Raizen. Brownian motion at short time scales. Ann. Phys. Lpz., 525, 281(2013).

    [100] T. Li, S. Kheifets, M. Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys., 7, 527(2011).

    [101] D. Kleckner, D. Bouwmeester. Sub-kelvin optical cooling of a micromechanical resonator. Nature, 444, 75(2006).

    [102] J. E. Curtis, B. A. Koss, D. G. Grier. Dynamic holographic optical tweezers. Opt. Commun., 207, 169(2002).

    [103] R. Agarwal et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express, 13, 8906(2005).

    [104] S. Dai et al. Laser-induced single point nanowelding of silver nanowires. Appl. Phys. Lett., 108, 121103(2016).

    [105] P. Ghosh et al. Photothermal-induced nanowelding of metal–semiconductor heterojunction in integrated nanowire units. Adv. Electron. Mater., 4, 1700614(2018).

    [106] G. Liu, Q. Li, M. Qiu. Sacrificial solder based nanowelding of ZnO nanowires. J. Phys. Conf. Ser., 680, 012027(2016).

    [107] Q. Li et al. Optically controlled local nanosoldering of metal nanowires. Appl. Phys. Lett., 108, 193101(2016).

    [108] S. A. Maier. Plasmonics: Fundamentals and Applications, 1(2007).

    [109] Y. Zhang et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl., 10, 1(2021).

    [110] Q. Zhan. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt. Lett., 31, 1726(2006).

    [111] H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B, 15, 1381(1998).

    [112] C. Min et al. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [113] J. R. Arias-González, M. Nieto-Vesperinas. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A, 20, 1201(2003).

    [114] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930(1994).

    [115] A. Lehmuskero et al. Laser trapping of colloidal metal nanoparticles. ACS Nano, 9, 3453(2015).

    [116] M. Righini et al. Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys., 3, 477(2007).

    [117] E. Kretschmann. Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Z. für Physik A Hadrons nucl., 241, 313(1971).

    [118] L. Shi et al. Impact of plasmon-induced atoms migration in harmonic generation. ACS Photonics, 5, 1208(2018).

    [119] J. J. Baumberg et al. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater., 18, 668(2019).

    [120] A. Grigorenko et al. Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics, 2, 365(2008).

    [121] M. L. Juan et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915(2009).

    [122] J. Shen et al. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering. Appl. Phys. Lett., 103, 191119(2013).

    [123] G. Brunetti et al. Nanoscale optical trapping by means of dielectric bowtie. Photonics, 9, 425(2022).

    [124] J. Hernández-Sarria et al. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes. Phys. Rev. Lett., 127, 186803(2021).

    [125] S. Lin et al. Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. Nano Lett., 13, 559(2013).

    [126] D. Conteduca et al. Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics, 2, 086101(2017).

    [127] S. Arnold et al. Whispering gallery mode carousel–a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express, 17, 6230(2009).

    [128] S. Yang et al. Nanoparticle trapping in a quasi-BIC system. ACS Photonics, 8, 1961(2021).

    [129] T. Shi et al. Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces. PhotoniX, 2, 7(2021).

    [130] J. Yu et al. Dielectric super-absorbing metasurfaces via PT symmetry breaking. Optica, 8, 1290(2021).

    [131] J. Yao et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX, 3, 23(2022).

    [132] K. V. Baryshnikova et al. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).

    [133] J. Tian et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 10, 1(2019).

    [134] D. Conteduca et al. Exploring the limit of multiplexed near-field optical trapping. ACS Photonics, 8, 2060(2021).

    [135] S. Gaugiran et al. Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt. Express, 13, 6956(2005).

    [136] M. Yuan et al. Optical manipulation of dielectric nanoparticles with Au micro-racetrack resonator by constructive interference of surface plasmon waves. Plasmonics, 13, 427(2018).

    [137] A. H. Yang et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 457, 71(2009).

    [138] L. Ng et al. Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide. Appl. Phys. Lett., 76, 1993(2000).

    [139] S. Kawata, T. Sugiura. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett., 17, 772(1992).

    [140] S. Lin, E. Schonbrun, K. Crozier. Optical manipulation with planar silicon microring resonators. Nano Lett., 10, 2408(2010).

    [141] S. Yu et al. On-chip optical tweezers based on freeform optics. Optica, 8, 409(2021).

    [142] A. M. Caravaca-Aguirre, R. Piestun. Single multimode fiber endoscope. Opt. Express, 25, 1656(2017).

    [143] I. N. Papadopoulos et al. High-resolution. Psaltis, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed Opt. Express, 4, 260(2013).

    [144] T. Wang et al. Flexible minimally invasive coherent anti-Stokes Raman spectroscopy (CARS) measurement method with tapered optical fiber probe for single-cell application. PhotoniX, 3, 1(2022).

    [145] P. Jess et al. Dual beam fibre trap for Raman microspectroscopy of single cells. Opt. Express, 14, 5779(2006).

    [146] A. Asadollahbaik et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photonics, 7, 88(2019).

    [147] I. N. Papadopoulos et al. Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media. Opt. Lett., 38, 2776(2013).

    [148] Y. Li et al. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 10, 5800(2016).

    [149] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214(2004).

    [150] Y.-X. Ren et al. Hysteresis and balance of backaction force on dielectric particles photothermally mediated by photonic nanojet. Nanophotonics, 11, 4231(2022).

    [151] I. T. Leite et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics, 12, 33(2018).

    [152] V. G. Shvedov et al. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express, 19, 17350(2011).

    [153] V. N. Mahajan. Aberration Theory Made Simple, 6(1991).

    [154] J. Arlt, M. J. Padgett. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett., 25, 191(2000).

    [155] D. Cojoc et al. Laser trapping and micro-manipulation using optical vortices. Microelectron. Eng., 78, 125(2005).

    [156] M. Braun, F. Cichos. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano, 7, 11200(2013).

    [157] M. Braun, A. Würger, F. Cichos. Trapping of single nano-objects in dynamic temperature fields. Phys. Chem. Chem. Phys., 16, 15207(2014).

    [158] M. Fränzl et al. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat. Methods, 16, 611(2019).

    [159] J. Li et al. Opto-refrigerative tweezers. Sci. Adv., 7, eabh1101(2021).

    [160] A. Ajdari, L. Bocquet. Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett., 96, 186102(2006).

    [161] S. A. Putnam, D. G. Cahill, G. C. Wong. Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir, 23, 9221(2007).

    [162] L. Lin et al. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip, 17, 3061(2017).

    [163] L. Lin et al. Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano, 11, 3147(2017).

    [164] M. Reichl et al. Why charged molecules move across a temperature gradient: the role of electric fields. Phys. Rev. Lett., 112, 198101(2014).

    [165] A. Würger. Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett., 101, 108302(2008).

    [166] A. Majee, A. Würger. Collective thermoelectrophoresis of charged colloids. Phys. Rev. E, 83, 061403(2011).

    [167] L. Lin et al. Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano, 10, 9659(2016).

    [168] L. Lin et al. Opto-thermophoretic assembly of colloidal matter. Sci. Adv., 3, e1700458(2017).

    [169] X. Wang et al. Graphene-based opto-thermoelectric tweezers. Adv. Mater., 34, 2107691(2022).

    [170] V. Vladimirsky, Y. Terletzky. Hydrodynamical theory of translational Brownian motion. Zh. Eksp. Teor. Fiz, 15, 258(1945).

    [171] J. F. Brady. Brownian motion, hydrodynamics, and the osmotic pressure. J. Chem Phys., 98, 3335(1993).

    [172] M. Fränzl, F. Cichos. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat. Commun., 13, 656(2022).

    [173] A. Ramos et al. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D, 31, 2338(1998).

    [174] T. M. Squires, M. Z. Bazant. Induced-charge electro-osmosis. J. Fluid Mech., 509, 217(2004).

    [175] H. Hwang, J.-K. Park. Rapid and selective concentration of microparticles in an optoelectrofluidic platform. Lab Chip, 9, 199(2009).

    [176] S. Zhang et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun., 12, 5349(2021).

    [177] C. Hong, S. Yang, J. C. Ndukaife. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol., 15, 908(2020).

    [178] I. D. Stoev et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight, 1, 7(2021).

    [179] X. Zhang, B. Gu, C.-W. Qiu. Force measurement goes to femto-Newton sensitivity of single microscopic particle. Light Sci. Appl., 10, 243(2021).

    [180] A. Dogariu, S. Sukhov, J. Sáenz. Optically induced ‘negative forces’. Nat. Photonics, 7, 24(2013).

    [181] M. I. Petrov et al. Surface plasmon polariton assisted optical pulling force. Laser Photonics Rev., 10, 116(2016).

    [182] D. B. Ruffner, D. G. Grier. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett., 109, 163903(2012).

    [183] S.-H. Lee, Y. Roichman, D. G. Grier. Optical solenoid beams. Opt. Express, 18, 6988(2010).

    [184] K. Ding et al. Realization of optical pulling forces using chirality. Phys. Rev. A, 89, 063825(2014).

    [185] R. Ali et al. Enantioselection and chiral sorting of single microspheres using optical pulling forces. Opt. Lett., 46, 1640(2021).

    [186] H. Zheng et al. Selective transport of chiral particles by optical pulling forces. Opt. Express, 29, 42684(2021).

    [187] A. S. Shalin, S. V. Sukhov. Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon. Plasmonics, 8, 625(2013).

    [188] N. Kostina et al. Optical pulling and pushing forces via Bloch surface waves. Opt. Lett., 47, 4592(2022).

    [189] A. Ivinskaya et al. Optomechanical manipulation with hyperbolic metasurfaces. ACS Photonics, 5, 4371(2018).

    [190] A. S. Shalin et al. Optical pulling forces in hyperbolic metamaterials. Phys. Rev. A, 91, 063830(2015).

    [191] H. Li et al. Momentum-topology-induced optical pulling force. Phys. Rev. Lett., 124, 143901(2020).

    [192] T. Zhu et al. Self-induced backaction optical pulling force. Phys. Rev. Lett., 120, 123901(2018).

    [193] T. Zhu et al. Mode conversion enables optical pulling force in photonic crystal waveguides. Appl. Phys. Lett., 111, 061105(2017).

    [194] V. Intaraprasonk, S. Fan. Optical pulling force and conveyor belt effect in resonator–waveguide system. Opt. Lett., 38, 3264(2013).

    [195] V. Yannopapas, P. G. Galiatsatos. Electromagnetic forces in negative-refractive-index metamaterials: a first-principles study. Phys. Rev. A, 77, 043819(2008).

    [196] A. Oliner, T. Tamir. Backward waves on isotropic plasma slabs. J. Appl. Phys., 33, 231(1962).

    [197] R. Gómez-Medina, J. J. Sáenz. Unusually strong optical interactions between particles in quasi-one-dimensional geometries. Phys. Rev. Lett., 93, 243602(2004).

    [198] W. Ding et al. Photonic tractor beams: a review. Adv. Photonics, 1, 024001(2019).

    [199] O. Jovanovic. Photophoresis—light induced motion of particles suspended in gas. J. Quant. Spectrosc. Radiat. Transfer, 110, 889(2009).

    [200] V. Chernyak, S. Beresnev. Photophoresis of aerosol particles. J. Aerosol Sci., 24, 857(1993).

    [201] P. W. Dusel, M. Kerker, D. D. Cooke. Distribution of absorption centers within irradiated spheres. J. Opt. Soc. Am., 69, 55(1979).

    [202] V. Shvedov et al. A long-range polarization-controlled optical tractor beam. Nat. Photonics, 8, 846(2014).

    [203] J. Maxwell. VII: On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc., 170, 231(1879).

    [204] X. Peng et al. Opto-thermoelectric microswimmers. Light Sci. Appl., 9, 141(2020).

    [205] L. Lin et al. Opto-thermoelectric pulling of light-absorbing particles. Light Sci. Appl., 9, 34(2020).

    [206] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796(2015).

    [207] S. Fu et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    [208] M. Friese et al. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 54, 1593(1996).

    [209] N. Simpson et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 22, 52(1997).

    [210] S. J. Parkin et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt. Express, 17, 21944(2009).

    [211] A. I. Bishop et al. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92, 198104(2004).

    [212] S. J. Parkin et al. Picoliter viscometry using optically rotated particles. Phys. Rev. E, 76, 041507(2007).

    [213] T. M. Hoang et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).

    [214] J. Ahn et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [215] P. Allen. A radiation torque experiment. Am. J. Phys., 34, 1185(1966).

    [216] L. Tong, V. D. Miljkovic, M. Kall. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268(2010).

    [217] N. Sule et al. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano Lett., 17, 6548(2017).

    [218] J. Chen et al. Negative optical torque. Sci. Rep., 4, 6386(2014).

    [219] Y. Shi et al. Inverse optical torques on dielectric nanoparticles in elliptically polarized light waves. Phys. Rev. Lett., 129, 053902(2022).

    [220] F. Han et al. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun., 9, 4897(2018).

    [221] Y. Hu et al. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX, 2, 10(2021).

    [222] V. Garcés-Chávez et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett., 91, 093602(2003).

    [223] A. O’neil et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett., 88, 053601(2002).

    [224] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161(2011).

    [225] Y. Roichman et al. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [226] M. Liu et al. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol., 5, 570(2010).

    [227] S. Wang, C. T. Chan. Lateral optical force on chiral particles near a surface. Nat. Commun., 5, 3307(2014).

    [228] C. Genet. Chiral light–chiral matter interactions: an optical force perspective. ACS Photonics, 9, 319(2022).

    [229] Y. Yang et al. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. Opt. Express, 16, 6877(2008).

    [230] A. Hayat, J. B. Mueller, F. Capasso. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci., 112, 13190(2015).

    [231] N. Berova, K. Nakanishi, R. W. Woody. Circular Dichroism: Principles and Applications(2000).

    [232] C. Maggi et al. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun., 6, 7855(2015).

    [233] Y. Zong et al. An optically driven bistable Janus rotor with patterned metal coatings. ACS Nano, 9, 10844(2015).

    [234] J. Liu, H.-L. Guo, Z.-Y. Li. Self-propelled round-trip motion of Janus particles in static line optical tweezers. Nanoscale, 8, 19894(2016).

    [235] H.-R. Jiang, N. Yoshinaga, M. Sano. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett., 105, 268302(2010).

    [236] O. Ilic et al. Exploiting optical asymmetry for controlled guiding of particles with light. ACS Photonics, 3, 197(2016).

    [237] K. Dietrich et al. Microscale marangoni surfers. Phys. Rev. Lett., 125, 098001(2020).

    [238] F. Schmidt et al. Microscopic engine powered by critical demixing. Phys. Rev. Lett., 120, 068004(2018).

    [239] M. Fränzl et al. Fully steerable symmetric thermoplasmonic microswimmers. ACS Nano, 15, 3434(2021).

    [240] D. Paul, R. Chand, G. P. Kumar. Optothermal evolution of active colloidal matter in a defocused laser trap. ACS Photonics, 9, 3440(2022).

    [241] A. A. Ambardekar, Y. Li. Optical levitation and manipulation of stuck particles with pulsed optical tweezers. Opt. Lett., 30, 1797(2005).

    [242] J. Deng et al. Numerical modeling of optical levitation and trapping of the “stuck” particles with a pulsed optical tweezers. Opt. Express, 13, 3673(2005).

    [243] T. B. Lindballe et al. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude. Opt. Express, 21, 1986(2013).

    [244] J. C. Shane et al. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers. Opt. Express, 18, 7554(2010).

    [245] A. Usman, W.-Y. Chiang, H. Masuhara. Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses. J. Photochem. Photobiol. A, 234, 83(2012).

    [246] W.-Y. Chiang et al. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J. Phys. Chem. B, 118, 14010(2014).

    [247] J. Lu et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett., 118, 043601(2017).

    [248] W. Lyu et al. Nano-motion of micro-objects driven by light-induced elastic waves on solid interfaces. Phys. Rev. Appl., 19, 024049(2023).

    [249] M. S. Alam, Q. Zhan, C. Zhao. Additive opto-thermomechanical nanoprinting and nanorepairing under ambient conditions. Nano Lett., 20, 5057(2020).

    [250] A. Habenicht et al. Jumping nanodroplets. Science, 309, 2043(2005).

    [251] J. Wang et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express, 19, 14726(2011).

    [252] X. Chen et al. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano, 6, 2550(2012).

    [253] M. Fuentes-Cabrera et al. Controlling the velocity of jumping nanodroplets via their initial shape and temperature. ACS Nano, 5, 7130(2011).

    [254] J. Boneberg et al. Jumping nanodroplets: a new route towards metallic nano-particles. Appl. Phys. A, 93, 415(2008).

    [255] H. Gong et al. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Sci. Rep., 4, 6080(2014).

    [256] M. L. Tseng et al. Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique. Nanotechnology, 23, 444013(2012).

    [257] A. I. Kuznetsov et al. Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano, 5, 4843(2011).

    [258] S. Mailis et al. Etching and printing of diffractive optical microstructures by a femtosecond excimer laser. Appl. Opt., 38, 2301(1999).

    [259] J. Bohandy, B. Kim, F. Adrian. Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys., 60, 1538(1986).

    [260] C. Sones et al. Laser-induced-forward-transfer: a rapid prototyping tool for fabrication of photonic devices. Appl. Phys. A, 101, 333(2010).

    [261] D. B. Chrisey, G. K. Hubler. Pulsed Laser Deposition of Thin Films(1994).

    [262] D. H. Blank, M. Dekkers, G. Rijnders. Pulsed laser deposition in Twente: from research tool towards industrial deposition. J. Phys. D, 47, 034006(2013).

    [263] W. Huang, W. Qian, M. A. El-Sayed. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance. J. Am. Chem. Soc., 128, 13330(2006).

    [264] C. Tabor, W. Qian, M. A. El-Sayed. Dependence of the threshold energy of femtosecond laser ejection of gold nanoprisms from quartz substrates on the nanoparticle environment. J. Phys. Chem. C, 111, 8934(2007).

    [265] L. Shi et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 4, 1038(2017).

    [266] L. Shi et al. Resonant-plasmon-assisted subwavelength ablation by a femtosecond oscillator. Phys. Rev. Appl., 9, 024001(2018).

    [267] M. J. Sinclair. ITHERM 2000. Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 127(2000).

    [268] L. Ni, R. M. Pocratsky, M. P. de Boer. Demonstration of tantalum as a structural material for MEMS thermal actuators. Microsyst. Nanoeng., 7, 6(2021).

    [269] S. Lu et al. Nanotube micro-opto-mechanical systems. Nanotechnology, 18, 065501(2007).

    [270] B. Han et al. Carbon-based photothermal actuators. Adv. Funct. Mater., 28, 1802235(2018).

    [271] X. Zhang et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun., 5, 2983(2014).

    [272] B. Han et al. Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater., 31, 1806386(2019).

    [273] T. Wang et al. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages. Sci. Adv., 3, e1602697(2017).

    [274] J. Mu et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv., 1, e1500533(2015).

    [275] J. Deng et al. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc., 138, 225(2016).

    [276] L. Dong, Y. Zhao. Photothermally driven liquid crystal polymer actuators. Mater. Chem. Front., 2, 1932(2018).

    [277] D. Gao et al. Photothermal actuated origamis based on graphene oxide–cellulose programmable bilayers. Nanoscale Horiz., 5, 730(2020).

    [278] P. T. Mather, X. Luo, I. A. Rousseau. Shape memory polymer research. Annu. Rev. Mater. Res., 39, 445(2009).

    [279] M. Herath et al. Light activated shape memory polymers and composites: a review. Eur. Polym. J., 136, 109912(2020).

    [280] D. H. Yi et al. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. J. Colloid Interface Sci., 432, 128(2014).

    [281] H. Yang et al. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater., 29, 1701627(2017).

    [282] Z. Hu, Y. Li, J. Lv. Phototunable self-oscillating system driven by a self-winding fiber actuator. Nat. Commun., 12, 3211(2021).

    [283] A. M. Hubbard et al. Controllable curvature from planar polymer sheets in response to light. Soft Matter, 13, 2299(2017).

    [284] A. Lendlein et al. Light-induced shape-memory polymers. Nature, 434, 879(2005).

    [285] H. Jiang, S. Kelch, A. Lendlein. Polymers move in response to light. Adv. Mater., 18, 1471(2006).

    [286] R. R. Kohlmeyer, J. Chen. Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem., 125, 9404(2013).

    [287] A. W. Hauser et al. Reconfiguring nanocomposite liquid crystal polymer films with visible light. Macromol., 49, 1575(2016).

    [288] L. T. de Haan et al. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem., 124, 12637(2012).

    [289] J. J. Wie, M. R. Shankar, T. J. White. Photomotility of polymers. Nat. Commun., 7, 13260(2016).

    [290] J. Lv et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 537, 179(2016).

    [291] A. Rúa, F. E. Fernández, N. Sepúlveda. Bending in VO2-coated microcantilevers suitable for thermally activated actuators. J. Appl. Phys., 107, 074506(2010).

    [292] Y. Ma et al. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem., 123, 6378(2011).

    [293] M. Ji et al. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide. Adv. Funct. Mater., 24, 5412(2014).

    [294] Y. Yang, Y. Liu, Y. Shen. Plasmonic-assisted graphene oxide films with enhanced photothermal actuation for soft robots. Adv. Funct. Mater., 30, 1910172(2020).

    [295] O. M. Wani et al. An artificial nocturnal flower via humidity-gated photoactuation in liquid crystal networks. Adv. Mater., 31, 1805985(2019).

    [296] W. Wang et al. Photothermal and moisture actuator made with graphene oxide and sodium alginate for remotely controllable and programmable intelligent devices. ACS Appl. Nano Mater., 11, 21926(2019).

    [297] Y. Zhao et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Rob., 4, eaax7112(2019).

    [298] J. Li et al. Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nat. Commun., 10, 5672(2019).

    [299] J. Li et al. Opto-thermocapillary nanomotors on solid substrates. ACS Nano, 16, 8820(2022).

    [300] J. Li et al. Tunable chiral optics in all-solid-phase reconfigurable dielectric nanostructures. Nano Lett., 21, 973(2020).

    [301] J. Zhang et al. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection. Nat. Commun., 10, 5206(2019).

    [302] V. Harinarayana, Y. Shin. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review. Opt. Laser Technol., 142, 107180(2021).

    [303] D. Tan, B. Zhang, J. Qiu. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev., 15, 2000455(2021).

    [304] K. Sun et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307(2022).

    [305] C. V. Thompson. Solid-state dewetting of thin films. Annu. Rev. Mater. Res., 42, 399(2012).

    [306] Y. Wu et al. Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2. Langmuir, 27, 13314(2011).

    [307] J. Fowlkes et al. Hierarchical nanoparticle ensembles synthesized by liquid phase directed self-assembly. Nano Lett., 14, 774(2014).

    [308] J. D. Fowlkes et al. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett., 11, 2478(2011).

    [309] G. D. Tsibidis et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys. Rev. B, 86, 115316(2012).

    [310] J. Bonse, S. Gräf. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev., 14, 2000215(2020).

    [311] M. Reininghaus et al. Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses. Opt. Express, 21, 32176(2013).

    [312] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517(1987).

    [313] D. Gruszka, P. O. Heidarsson, C. Cecconi. From folding to function: complex macromolecular reactions unraveled one-by-one with optical tweezers. Essays Biochem., 65, 129(2021).

    [314] M.-C. Zhong et al. Trapping red blood cells in living animals using optical tweezers. Nat. Commun., 4, 1768(2013).

    [315] P. L. Johansen et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun., 7, 10974(2016).

    [316] M. T. Woodside, S. M. Block. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys., 43, 19(2014).

    [317] E. A. Abbondanzieri et al. Direct observation of base-pair stepping by RNA polymerase. Nature, 438, 460(2005).

    [318] C. Deufel et al. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods, 4, 223(2007).

    [319] J. Ma, L. Bai, M. D. Wang. Transcription under torsion. Science, 340, 1580(2013).

    [320] M. Schlierf, H. Li, J. M. Fernandez. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc. Natl. Acad. Sci., 101, 7299(2004).

    [321] A. N. Gupta et al. Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nat. Phys., 7, 631(2011).

    [322] B. Agate et al. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt. Express, 12, 3011(2004).

    [323] M. J. Lang et al. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods, 1, 133(2004).

    [324] M. Belkin et al. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano, 9, 10598(2015).

    [325] V. P. Desai et al. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Mol. Cell, 75, 1007(2019).

    [326] J. T. Lewis, J. Pulè. Dynamical Theories of Brownian Motion(1975).

    [327] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322, 549(1905).

    [328] A. Einstein. Theoretische bemerkungen über die Brownsche Bewegung. Z. für Elektrochemie angewandte physikalische Chem., 13, 41(1907).

    [329] S. Kheifets et al. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science, 343, 1493(2014).

    [330] G. Volpe, G. Volpe. Simulation of a Brownian particle in an optical trap. Am. J. Phys., 81, 224(2013).

    [331] A. Einstein. Über gravitationswellen. Sitzungsber. Preußischen Akad. Wiss., 1918, 154(1918).

    [332] B. Abbott et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys., 72, 076901(2009).

    [333] A. Arvanitaki, A. A. Geraci. Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett., 110, 071105(2013).

    [334] Z.-Q. Yin, A. A. Geraci, T. Li. Optomechanics of levitated dielectric particles. Int. J. Mod. Phys. B, 27, 1330018(2013).

    [335] J. Millen et al. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).

    [336] J. Gieseler, L. Novotny, R. Quidant. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys., 9, 806(2013).

    [337] N. Aggarwal et al. Searching for new physics with a levitated-sensor-based gravitational-wave detector. Phys. Rev. Lett., 128, 111101(2022).

    [338] D. E. Chang et al. Ultrahigh-Q mechanical oscillators through optical trapping. New J. Phys., 14, 045002(2012).

    [339] D. J. Collins et al. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Sci. Adv., 2, e1600089(2016).

    [340] Z. Wang, J. Zhe. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip, 11, 1280(2011).

    [341] C. Wood et al. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves. Appl. Phys. Lett., 94, 054101(2009).

    [342] D. Smalley et al. A photophoretic-trap volumetric display. Nature, 553, 486(2018).

    [343] J. Lu et al. Light-induced reversible expansion of individual gold nanoplates. AIP Adv., 7, 105025(2017).

    [344] C. Li et al. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX, 2, 11(2021).

    [345] R. Oltra et al. Modelling and diagnostic of pulsed laser-solid interactions. applications to laser cleaning. Proc. SPIE, 3385, 499(2000).

    [346] V. E. Gusev, A. A. Karabutov. Laser optoacoustics. NASA STI Repository Tech. Rep. A, 93, 16842(1991).

    [347] O. Yavas et al. Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. Phys. Rev. Lett., 70, 1830(1993).

    [348] D. Frost. Dynamics of explosive boiling of a droplet. Phys. Fluids, 31, 2554(1988).

    [349] Y. Ye et al. Laser plasma shockwave cleaning of SiO2 particles on gold film. Opt. Lasers Eng., 49, 536(2011).

    [350] P. Psyllaki, R. Oltra. Preliminary study on the laser cleaning of stainless steels after high temperature oxidation. Mater. Sci. Eng. A, 282, 145(2000).

    [351] W. Zhao, Z. Yu. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser. Opt. Lasers Eng., 105, 125(2018).

    [352] N. Zhang, Y.-B. Zhao, X.-N. Zhu. Light propulsion of microbeads with femtosecond laser pulses. Opt. Express, 12, 3590(2004).

    [353] H. Yu et al. The propulsion mechanism and tiny particles removal investigation based on the “micro-gun” propulsion system. Opt. Laser Technol., 119, 105627(2019).

    [354] J. Wu et al. The new technologies developed from laser shock processing. Materials, 13, 1453(2020).

    [355] D. Devaux et al. Generation of shock waves by laser-induced plasma in confined geometry. J. Appl. Phys., 74, 2268(1993).

    [356] V. Malka. Laser plasma accelerators. Phys. Plasmas, 19, 055501(2012).

    [357] E. Gschwendtner, P. Muggli. Plasma wakefield accelerators. Nat. Rev. Phys., 1, 246(2019).

    [358] E. Esarey, C. Schroeder, W. Leemans. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 81, 1229(2009).

    [359] T. Tajima, X. Yan, T. Ebisuzaki. Wakefield acceleration. Rev. Mod. Plasma Phys., 4, 7(2020).

    [360] L. Evans. The large hadron collider. New J. Phys., 9, 335(2007).

    [361] C. N. Danson et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, E54(2019).

    [362] D. Gao et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [363] Z. Fu et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap. Opt. Commun., 417, 103(2018).

    [364] R. Klas et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX, 2, 4(2021).

    [365] L. Malmqvist, H. Hertz. Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers. Appl. Opt., 34, 3392(1995).

    [366] Y. Jiang, T. Narushima, H. Okamoto. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys., 6, 1005(2010).

    [367] Y. Zhang et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett., 18, 5538(2018).

    [368] W.-Y. Chiang, A. Usman, H. Masuhara. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles. J. Phys. Chem. C, 117, 19182(2013).

    [369] M. Hoshina et al. Super-resolution trapping: a nanoparticle manipulation using nonlinear optical response. ACS Photonics, 5, 318(2018).

    [370] J. Geng et al. Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light Sci. Appl., 11, 189(2022).

    [371] A. Chimmalgi et al. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett., 82, 1146(2003).

    [372] B. Strycker et al. Femtosecond-laser-induced shockwaves in water generated at an air-water interface. Opt. Express, 21, 23772(2013).

    [373] X. Yang et al. Electricity generation through light-responsive diving–surfacing locomotion of a functionally cooperating smart device. Adv. Mater., 30, 1803125(2018).

    [374] Y. Yang, Y. Shen. Light-driven carbon-based soft materials: principle, robotization, and application. Adv. Opt. Mater., 9, 2100035(2021).

    [375] I. B. Jurič, I. Anić. The use of lasers in disinfection and cleanliness of root canals: a review. Acta Stomatol. Croat., 48, 6(2014).

    [376] F. Meng et al. Vapor-enabled propulsion for plasmonic photothermal motor at the liquid/air interface. J. Am. Chem. Soc., 139, 12362(2017).

    [377] C. Lv et al. Controlling the trajectories of nano/micro particles using light-actuated Marangoni flow. Nano Lett., 18, 6924(2018).

    [378] Y. Xie et al. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip, 13, 1772(2013).

    [379] H. Ding et al. Programmable multimodal optothermal manipulation of synthetic particles and biological cells. ACS Nano, 16, 10878(2022).

    [380] H. Ding et al. Universal optothermal micro/nanoscale rotors. Sci. Adv., 8, eabn8498(2022).

    [381] T. Zhang et al. Macroscopic and direct light propulsion of bulk graphene material. Nat. Photonics, 9, 471(2015).

    [382] T. Zhang et al. Reply to ‘Do thermal effects cause the propulsion of bulk graphene material?’. Nat. Photonics, 10, 139(2016).

    [383] L. Wang et al. Mechanism research of the laser propulsion of bulk graphene sponge material through high vacuum experiment. Vacuum, 191, 110334(2021).

    [384] E. A. Peraza-Hernandez et al. Origami-inspired active structures: a synthesis and review. Smart Mater. Struct., 23, 094001(2014).

    [385] A. Ozcelik et al. Acoustic tweezers for the life sciences. Nat. Methods, 15, 1021(2018).

    [386] X. Wang et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip, 11, 3656(2011).

    [387] M. Gu et al. Tweezing and manipulating micro-and nanoparticles by optical nonlinear endoscopy. Light Sci. Appl., 3, e126(2014).

    [388] J. Hao et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett., 96, 251104(2010).

    [389] J. Hao, L. Zhou, M. Qiu. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B, 83, 165107(2011).

    [390] L. Meng et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett., 39, 1137(2014).

    [391] W. Wang et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ɛ″ metals. Appl. Phys. Lett., 110, 101101(2017).

    [392] Q. Li et al. Engineering optical absorption in graphene and other 2D materials: advances and applications. Adv. Opt. Mater., 7, 1900595(2019).

    Qiannan Jia, Wei Lyu, Wei Yan, Weiwei Tang, Jinsheng Lu, Min Qiu. Optical manipulation: from fluid to solid domains[J]. Photonics Insights, 2023, 2(2): R05
    Download Citation