• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 70604 (2018)
Liao Kun1, Liao Jianfei2, Xie Yingmao2、*, Wang Xinghua2, and Tian Hua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.070604 Cite this Article Set citation alerts
    Liao Kun, Liao Jianfei, Xie Yingmao, Wang Xinghua, Tian Hua. A Defect Photonic Crystal Fiber With High Birefringence and Negative Dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70604 Copy Citation Text show less
    References

    [1] Russell P S, Hand D P, Chow Y T, et al. Optically induced creation, transformation, and organization of defects and color centers in optical fibers[J]. Proceedings of SPIE, 1991, 1516: 47-54.

    [2] Wang W, Zhu Z M. Analysis of photonic crystal fibers and its application in supercontinuum[J]. Infrared and Laser Engineering, 2007, 36(5): 684-688.

    [3] Hao R, Li Z, Sun G, et al. Analysis on photonic crystal fibers with circular air holes in elliptical configuration[J]. Optical Fiber Technology, 2013, 19(5): 363-368.

    [4] Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18): 1325-1327.

    [5] Zhang L, Li S G, Yao Y Y, et al. Characteristics of nano-structured photonic crystal fibers with high birefringence[J]. Acta Physica Sinica, 2010, 59(2): 1101-1107.

    [6] Cao Y, Li R M, Tong Z R. Investigation of a new kind of high birefringence photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(8): 084215.

    [7] Zhou M H, Huang Y L. Highly birefringent photonic crystal fiber based on lattice structure of elliptic layer[J]. Acta Photonica Sinica, 2016, 45(3): 0306002.

    [8] Li X Y, Xu Z L, Yang H R, et al. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber[J]. Chinese Journal of Lasers, 2016, 43(4): 0405003.

    [9] Gu Q Z, Li Q H. Novel photonic crystal fiber with high birefringence and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060603.

    [10] Wang J D, Chen Y, Chen X N. Dual-channel photonic time-stretched analog-to-digital converter system based on dispersion compensating photonic crystal fiber[J]. Acta Optica Sinica, 2017, 37(12): 1206003.

    [11] Fujisawa T, Koshiba M. Finite element characterization of chromatic dispersion in nonlinear holey fibers[J]. Optics Express, 2003, 11(13): 1481-1489.

    [12] Miao R C, Zhang Y N, Ren L Y, et al. Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre[J]. Chinese Physics B, 2007, 16(6): 1719-1724.

    [13] Boyd R W. Nonlinear optics[M]. London: Academic Press, 2003.

    [14] Liou J H, Huang S S, Yu C P. Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers[J]. Optics Communications, 2010, 283(6): 971-974.

    [15] Chow K K, Shu C, Lin C, et al. Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber[J]. IEEE Photonics Technology Letters, 2005, 17(3): 624-626.

    [16] Yang T Y, Jiang H M, Wang E L, et al. A photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 350-354.

    Liao Kun, Liao Jianfei, Xie Yingmao, Wang Xinghua, Tian Hua. A Defect Photonic Crystal Fiber With High Birefringence and Negative Dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70604
    Download Citation