• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 6, 692 (2020)
Dong WANG1、2、*, Hua ZHANG1, Fei YAN1, Yunhan ZHANG1, Xiaotian SONG1、2, and Yibo ZHAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2020.06.008 Cite this Article
    WANG Dong, ZHANG Hua, YAN Fei, ZHANG Yunhan, SONG Xiaotian, ZHAO Yibo. Analysis of 1-decoy state quantum digital signature protocol[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 692 Copy Citation Text show less
    References

    [1] Diffie W, Hellman M. New directions in cryptography [J]. IEEE Transactions on Information Theory, 1976, 22(6): 644-654.

    [2] Rivest R L. Cryptography [M]. Algorithms and Complexity Elsevier, 1990: 717-755.

    [3] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems [J]. Communications of the ACM, 1978, 21(2): 120-126.

    [4] ElGamal T. A public key crypto-system and a signature scheme based on discrete logarithms [J]. IEEE Transactions on Information Theory, 1985, 31(4): 46972.

    [5] Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA) [J]. International Journal of Information Security, 2001, 1(1): 36-63.

    [6] Gottesman D, Chuang I. Quantum digital signatures [J]. 2001, arXiv preprint quant-ph/0105032.

    [7] Dunjko V, Wallden P, Andersson E. Quantum digital signatures without quantum memory [J]. Physical Review Letters, 2014, 112(4): 040502.

    [8] Arrazola J M, Lütkenhaus N. Quantum communication with coherent states and linear optics [J]. Physical Review A, 2014, 90(4): 042335.

    [9] Wallden P, Dunjko V, Kent A, et al. Quantum digital signatures with quantum-key-distribution components [J]. Physical Review A, 2015, 91(4): 042304.

    [10] Amiri R, Wallden P, Kent A, et al. Secure quantum signatures using insecure quantum channels [J]. Physical Review A, 2016, 93(3): 032325.

    [11] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance [J]. Optics Letters, 2018, 43(9): 2030-2033.

    [14] Clarke P J, Collins R J, Dunjko V, et al. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light [J]. Nature Communications, 2012, 3(1): 1-8.

    [15] Collins R J, Donaldson R J, Dunjko V, et al. Realization of quantum digital signatures without the requirement of quantum memory [J]. Physical Review Letters, 2014, 113(4): 040502.

    [16] Donaldson R J, Collins R J, Kleczkowska K, et al. Experimental demonstration of kilometer-range quantum digital signatures [J]. Physical Review A, 2016, 93(1): 012329.

    [17] Collins R J, Amiri R, Fujiwara M, et al. Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system [J]. Optics Letters, 2016, 41(21): 4883886.

    [18] Collins R J, Amiri R, Fujiwara M, et al. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution [J]. Scientific Reports, 2017, 7(1): 1-8.

    [19] Zhang C H, Zhou X Y, Ding H J, et al. Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km [J]. Physical Review Applied, 2018, 10(3): 034033.

    [20] An X B, Zhang H, Zhang C M, et al. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system [J]. Optics Letters, 2019, 44(1): 139-142.

    [21] Ding H J, Chen J J, Ji L, et al. 280 km experimental demonstration of quantum digital signature with one decoy state [J]. Optics Letters, 2020, 45(7): 1711-1714.

    [22] Yin H L, Wang W L, Tang Y L, et al. Experimental measurement-device-independent quantum digital signatures over a metropolitan network [J]. Physical Review A, 2017, 95(4): 042338.

    [23] Roberts G L, Lucamarini M, Yuan Z L, et al. Experimental measurement-device-independent quantum digital signatures [J]. Nature Communications, 2017, 8(1): 1-7.

    [24] Chen J M, Zhang H, Zhou X Y, et al. Practical decoy-state quantum digital signature with optimized parameters [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 535: 122341.

    [25] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91: 057901.

    [26] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94: 230503.

    [27] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94: 230504.

    [28] Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85: 1330.

    [29] Rusca D, Boaron A, Grünenfelder F, et al. Finite-key analysis for the 1-decoy state QKD protocol [J]. Applied Physics Letters, 2018, 112(17): 171104.

    [30] He D Y, Wang S, Chen W, et al. Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse [J]. Applied Physics Letters, 2017, 110(11): 111104.

    [31] Fan Yuan G J, Wang C, Wang S, et al. Afterpulse analysis for quantum key distribution [J]. Physical Review Applied, 2018, 10(6): 064032.

    WANG Dong, ZHANG Hua, YAN Fei, ZHANG Yunhan, SONG Xiaotian, ZHAO Yibo. Analysis of 1-decoy state quantum digital signature protocol[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 692
    Download Citation