• Infrared and Laser Engineering
  • Vol. 49, Issue 5, 20190462 (2020)
Gu Mu1,2,*, Ren Qifeng1, Liao Sheng1, Zhou Jinmei1, and Zhao Rujin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla20190462 Cite this Article
    Gu Mu, Ren Qifeng, Liao Sheng, Zhou Jinmei, Zhao Rujin. Infrared multi-spectral design based on point target feature parameter extraction[J]. Infrared and Laser Engineering, 2020, 49(5): 20190462 Copy Citation Text show less

    Abstract

    In order to improve the stability and resolution of equivalent temperature and area, an infrared multi-spectral design method was proposed based on feature parameter extraction of point target. Firstly, the anti-error ability of multi bands was simulated by multi spectral design criteria, and the influencing factors of spectrum design were determined. According to the noise analysis of the ground-based infrared radiation measurement system, the conditions for the best working performance of the middle wave and long wave photodetectors were determined. Finally, the spectral distribution was determined according to the estimation of the band SNR and the infrared atmospheric window. The performance analysis results show that the designed spectrum can make the medium wave and the long wave work together in the case of various changes of the target, greatly improving the stability and resolution of the equivalent temperature and the equivalent area.
    $ {{{\varPhi }}_{{\text{M}}}} = {{{\varPhi }}_{{\text{T}}}}{{ + \sigma = }}\frac{{{1}}}{{{{{R}}^{{2}}}}}\centerdot\frac{{{{\varepsilon }}{{{A}}_{{t}}} \cdot \int_{{{{\lambda }}_{{i}}}}^{{{{\lambda }}_{{i}}} + \Delta {{\lambda }}} {{{M(T,\lambda )}}} {{{\rm{d}}\lambda }}}}{{\text{π}}} + {{\sigma }} $ (1)

    View in Article

    $ ΦM1=ΦT1+σ1=1R2εAtλ1λ1+ΔλM(T,λ)dλπ+σ1ΦM2=ΦT2+σ2=1R2εAtλ2λ2+ΔλM(T,λ)dλπ+σ2ΦMn=ΦTn+σn=1R2εAtλnλn+ΔλM(T,λ)dλπ+σn $ (2)

    View in Article

    ${{J(T,}}{{\varepsilon}} {{A)}} = \sum\limits_{{{i}} = 1}^{{n}} {\frac{1}{2}} {({{{\varPhi}} _{{\rm M}i}} - {{{\varPhi}} _{{\rm{T}}i}})^2}$(3)

    View in Article

    ${{\min J(T,}}{{\varepsilon}} {{A)}} = \min \sum\limits_{{{i}} = 1}^{{n}} {\frac{1}{2}} {({{{\varPhi}} _{{{\rm M}i}}} - {{{\varPhi}} _{{{\rm T}i}}})^2}$(4)

    View in Article

    ${D}_{{\rm{\lambda blip}}}^* = \frac{{{\lambda}} }{{2{{hc}}}}\sqrt {\frac{{\rm{\eta}} }{{{\varPhi}} }} $(5)

    View in Article

    $ Φt=η(λ2hcDc)2ΦbΦb=λ1λ2M(300)dλ4F2 $ (6)

    View in Article

    $ {{{\varPhi }}_{{o}}} = \frac{{\int_{{{{\lambda }}_{{1}}}}^{{{{\lambda }}_{{2}}}} {{{M(212){\rm{d}}\lambda }}} }}{{{{4}}{{{F}}^{{2}}}}} $ (7)

    View in Article

    $ {{{\varPhi }}_{{\rm a}}} = \frac{{{{{A}}_{{\rm p}}}{{{\varOmega }}_{{{\rm FOV}}}}{{{\tau }}_{{0}}}{{{\tau }}_{{\rm s}}}\int_{{{{\lambda }}_{{1}}}}^{{{{\lambda }}_{{1}}} + \Delta {{\lambda }}} {{{{L}}_{{{\rm bs}}}}{{(\lambda )}}} {{{\tau }}_{{\rm a}}}{{(\lambda )\lambda {\rm{d}}\lambda }}}}{{{{hc}} \cdot {{{A}}_{{\rm d}}}}} $ (8)

    View in Article

    $ {{D}}_{{c}}^{{*}} = \frac{{{\lambda }}}{{{{2hc}}}}\sqrt {\frac{{{\eta }}}{{{{{\varPhi }}_{{\rm t}}}+{{{\varPhi }}_{{\rm o}}}+{{{\varPhi }}_{{\rm a}}}}}} $ (9)

    View in Article

    $ {{SNR}} = {{{t}}_{{\rm o}}}{{{t}}_{{\rm s}}}{{{A}}_{{\rm t}}}\frac{{{{{A}}_{{\rm p}}}}}{{{\text{π}}{{{R}}^{{2}}}}}\int_{{\lambda }}^{{{\lambda + \Delta \lambda }}} {{{M(\lambda )}}{{{t}}_{{\rm a}}}{{(\lambda ){\rm{d}}\lambda }} \cdot \frac{{{{D}}_{{\rm c}}^{{*}}}}{{\sqrt {\Delta {{f}} \cdot {{{A}}_{{\rm d}}}} }}} $ (10)

    View in Article

    Gu Mu, Ren Qifeng, Liao Sheng, Zhou Jinmei, Zhao Rujin. Infrared multi-spectral design based on point target feature parameter extraction[J]. Infrared and Laser Engineering, 2020, 49(5): 20190462
    Download Citation