• Opto-Electronic Engineering
  • Vol. 50, Issue 5, 220238 (2023)
Yu Wang, Qihui Bian, Jun Liao, Tianrong Xu, and Tao Tang*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2023.220238 Cite this Article
    Yu Wang, Qihui Bian, Jun Liao, Tianrong Xu, Tao Tang. Strapdown inertial stabilization technology based on SBG inertial navigation in inertial stabilization gimbal[J]. Opto-Electronic Engineering, 2023, 50(5): 220238 Copy Citation Text show less
    Inertial stablization gimbal schematic
    Fig. 1. Inertial stablization gimbal schematic
    Direct position stabilization block diagram based on SBG
    Fig. 2. Direct position stabilization block diagram based on SBG
    The rate feedback based on SBG feedback
    Fig. 3. The rate feedback based on SBG feedback
    Angular rate feedforward block diagram based on gyro
    Fig. 4. Angular rate feedforward block diagram based on gyro
    Strapdown stabilization block diagram based on SBG position
    Fig. 5. Strapdown stabilization block diagram based on SBG position
    Dual disturbancetrapdown control block diagram based on SBG
    Fig. 6. Dual disturbancetrapdown control block diagram based on SBG
    Inertial stabilization gimbal experimental platform diagram
    Fig. 7. Inertial stabilization gimbal experimental platform diagram
    Stabilization errors under different disturbance frequencies
    Fig. 8. Stabilization errors under different disturbance frequencies
    Disturbance suppression frequency response curves
    Fig. 9. Disturbance suppression frequency response curves
    Stabilization errors and Fourier transform under under different frequency disturbance
    Fig. 10. Stabilization errors and Fourier transform under under different frequency disturbance
    System errors at different disturbance frequencies
    Fig. 11. System errors at different disturbance frequencies
    Disturbance suppression frequency response curves
    Fig. 12. Disturbance suppression frequency response curves
    扰动频率/Hz13510
    SBG直接反馈0.09320.24900.37080.2616
    基于SBG的速率反馈0.03780.08160.07600.0461
    基于SBG的陀螺前馈0.05550.10870.10480.1294
    Table 1. RMS errors of three direct stabilization methods
    扰动频率/Hz13510
    SBG捷联稳定0.10740.25420.23350.3094
    基于SBG双扰动捷联稳定0.10240.21620.17580.1661
    Table 2. RMS errors of three direct stabilization methods
    方法扰动抑制能力3 Hz5 Hz优缺点适用场景
    1SBG直接稳定−30 dB−26 dB1)扰动抑制能力低,稳定精度差; 2)无需解算,可实现直接稳定对惯性姿态传感器体积、重量有要求
    2基于SBG反馈的速率反馈稳定−42 dB−36 dB1)扰动抑制能力较高,并且低频性能高; 2)陀螺安装在万向架; 3)可测量所有传递到万向架的扰动1)同方法1; 2)对陀螺体积、重量有要求
    3基于SBG反馈的速率前馈稳定−42 dB−36 dB1)扰动抑制能力较高; 2)利用平台速率信息, 但无法测量万向架内部扰动1)同方法1; 2)平台需要提供速率信息
    4基于SBG的位置捷联稳定−32 dB−30 dB1)扰动抑制带宽低,稳定精度较差; 2)无法测量万向架的扰动经典捷联稳定
    5基于SBG双扰动捷联稳定−34 dB−32 dB1)扰动抑制带宽高,稳定精度好; 2)需要扰动解耦; 3)无法测量万向架的扰动经典捷联稳定以及速率前馈
    Table 3. Summary of 5 control methods
    Yu Wang, Qihui Bian, Jun Liao, Tianrong Xu, Tao Tang. Strapdown inertial stabilization technology based on SBG inertial navigation in inertial stabilization gimbal[J]. Opto-Electronic Engineering, 2023, 50(5): 220238
    Download Citation