• High Power Laser Science and Engineering
  • Vol. 8, Issue 2, 02000e22 (2020)
Fabrizio Consoli1、*, Vladimir T. Tikhonchuk2, Matthieu Bardon3, Philip Bradford4, David C. Carroll5, Jakub Cikhardt6, Mattia Cipriani1, Robert J. Clarke5, Thomas E. Cowan7, Colin N. Danson8, Riccardo De Angelis1, Massimo De Marco9, Jean-Luc Dubois10, Bertrand Etchessahar3, Alejandro Laso Garcia7, David I. Hillier11, Ales Honsa12, Weiman Jiang13, Viliam Kmetik12, Josef Krása14, Yutong Li15, Frédéric Lubrano3, Paul McKenna16, Josefine Metzkes-Ng7, Alexandre Poyé17, Irene Prencipe7, Piotr Ra?czka18, Roland A. Smith19, Roman Vrana12, Nigel C. Woolsey4, Egle Zemaityte16, Yihang Zhang15, Zhe Zhang13, Bernhard Zielbauer20, and David Neely21
Author Affiliations
  • 1ENEA, Fusion and Technologies for Nuclear Safety Department, C.R. Frascati, 00044Frascati, Italy
  • 2CELIA, University of Bordeaux, CNRS, CEA, 33405Talence, France
  • 3CEA, DAM, CESTA, 33116Le Barp, France
  • 4Department of Physics, York Plasma Institute, University of York, Heslington, YorkYO10 5DD, UK
  • 5Central Laser Facility, Rutherford Appleton Laboratory, STFC, UKRI, Chilton, Didcot, OxfordshireOX11 0QX, UK
  • 6Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27 Prague 6, Czech Republic
  • 7Helmholtz-Zentrum Dresden-Rossendorf, Institut für Strahlenphysik, 01328Dresden, Germany
  • 8AWE plc, Aldermaston, Reading, BerkshireRG7 4PR, UK
  • 9Centro de Laseres Pulsados (CLPU), 37185Villamayor, Salamanca, Spain
  • 10CELIA, University of Bordeaux, CNRS, CEA, 33405Talence, France
  • 11AWE plc, Aldermaston, Reading, BerkshireRG7 4PR, UK
  • 12ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 25241Dolní B?e?any, Czech Republic
  • 13Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
  • 14Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21Prague, Czech Republic
  • 15Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
  • 16Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, GlasgowG4 0NG, UK
  • 17Laboratory PIIM, University Aix-Marseille-CNRS, 13397Marseille, France
  • 18Institute of Plasma Physics and Laser Microfusion, 01-497Warsaw, Poland
  • 19The Blackett Laboratory, Imperial College London, LondonSW7 2AZ, UK
  • 20PHELIX Group, GSI Helmholtzzentrum für Schwerionenforschung, D-64291Darmstadt, Germany
  • 21Central Laser Facility, Rutherford Appleton Laboratory, STFC, UKRI, Chilton, Didcot, OxfordshireOX11 0QX, UK
  • show less
    DOI: 10.1017/hpl.2020.13 Cite this Article Set citation alerts
    Fabrizio Consoli, Vladimir T. Tikhonchuk, Matthieu Bardon, Philip Bradford, David C. Carroll, Jakub Cikhardt, Mattia Cipriani, Robert J. Clarke, Thomas E. Cowan, Colin N. Danson, Riccardo De Angelis, Massimo De Marco, Jean-Luc Dubois, Bertrand Etchessahar, Alejandro Laso Garcia, David I. Hillier, Ales Honsa, Weiman Jiang, Viliam Kmetik, Josef Krása, Yutong Li, Frédéric Lubrano, Paul McKenna, Josefine Metzkes-Ng, Alexandre Poyé, Irene Prencipe, Piotr Ra?czka, Roland A. Smith, Roman Vrana, Nigel C. Woolsey, Egle Zemaityte, Yihang Zhang, Zhe Zhang, Bernhard Zielbauer, David Neely. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e22 Copy Citation Text show less

    Abstract

    This paper provides an up-to-date review of the problems related to the generation, detection and mitigation of strong electromagnetic pulses created in the interaction of high-power, high-energy laser pulses with different types of solid targets. It includes new experimental data obtained independently at several international laboratories. The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce. The major emphasis is put on the GHz frequency domain, which is the most damaging for electronics and may have important applications. The physics of electromagnetic emissions in other spectral domains, in particular THz and MHz, is also discussed. The theoretical models and numerical simulations are compared with the results of experimental measurements, with special attention to the methodology of measurements and complementary diagnostics. Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions, which may have promising applications.
    $$\begin{eqnarray}T_{h}\simeq (\unicode[STIX]{x1D6FE}_{0}-1)m_{e}c^{2},\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}P_{E}=\frac{\unicode[STIX]{x1D707}_{0}}{6\unicode[STIX]{x1D70B}c}|\ddot{D}|^{2},\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}{\mathcal{E}}_{\text{THz}}\simeq \frac{Z_{0}}{6\unicode[STIX]{x1D70B}t_{\text{ej}}}Q_{e}^{2}\,\simeq \frac{Q_{e}^{2}}{1.5\unicode[STIX]{x1D70B}C_{t}},\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}P_{E}=\frac{2.44}{8\unicode[STIX]{x1D70B}}Z_{0}|J_{\unicode[STIX]{x1D714}_{s}}|^{2}.\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}{\mathcal{E}}_{\text{GHz}}\simeq \frac{2.44c}{32\unicode[STIX]{x1D70B}l_{s}}Z_{0}Q_{e}^{2}N_{h}\simeq 0.1\frac{c}{d_{t}}Z_{0}Q_{e}^{2}.\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x2202}_{t}f_{eh}=S_{\text{las}}(\unicode[STIX]{x1D700},t)-\unicode[STIX]{x1D70F}_{ee}^{-1}f_{eh}-g_{e}(\unicode[STIX]{x1D700},t),\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D719}_{E}(t)=\frac{1}{2\unicode[STIX]{x1D70B}\unicode[STIX]{x1D716}_{0}}\int _{0}^{t}\text{d}t^{\prime }\frac{J_{e}(t^{\prime })}{R_{e}(t^{\prime })+c(t-t^{\prime })}.\end{eqnarray}$$(7)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D719}_{E}(t)=\frac{1}{2\unicode[STIX]{x1D70B}\unicode[STIX]{x1D716}_{0}}\int _{0}^{t}\text{d}t^{\prime }\frac{J_{e}(t^{\prime })-J_{n}(t^{\prime })}{R_{e}(t^{\prime })+c(t-t^{\prime })}.\end{eqnarray}$$(8)

    View in Article

    $$\begin{eqnarray}\displaystyle \begin{array}{@{}c@{}}\mathbf{E}=\displaystyle \mathop{\sum }_{i=1}^{+\infty }A_{i}\mathbf{E}_{i}+\displaystyle \mathop{\sum }_{i=1}^{M-1}A_{i}^{0}\mathbf{E}_{i}^{\,0}+\displaystyle \mathop{\sum }_{i=1}^{+\infty }B_{i}\mathbf{s}_{i},\\ \mathbf{H}=\displaystyle \mathop{\sum }_{i=1}^{+\infty }C_{i}\mathbf{H}_{i}+\displaystyle \mathop{\sum }_{i=1}^{P-1}C_{i}^{\,0}\mathbf{H}_{i}^{\,0}+\displaystyle \mathop{\sum }_{i=1}^{+\infty }D_{i}\mathbf{g}_{i},\end{array} & & \displaystyle\end{eqnarray}$$(9)

    View in Article

    $$\begin{eqnarray}\text{AE}(t)\equiv \left|x(t)+\frac{i}{\unicode[STIX]{x1D70B}}\text{PV}\int _{-\infty }^{+\infty }\frac{x(\unicode[STIX]{x1D70F})}{t-\unicode[STIX]{x1D70F}}\,\text{d}\unicode[STIX]{x1D70F}\right|,\end{eqnarray}$$(10)

    View in Article

    $$\begin{eqnarray}f(t)=A_{0}\left[\exp \left(-\frac{t}{\unicode[STIX]{x1D70F}_{f}}\right)-\exp \left(-\frac{t}{\unicode[STIX]{x1D70F}_{r}}\right)\right]\,u(t).\end{eqnarray}$$(11)

    View in Article

    $$\begin{eqnarray}F_{x}^{w}(t,f)\equiv \int _{-\infty }^{+\infty }x(\unicode[STIX]{x1D70F})w(\unicode[STIX]{x1D70F}-t)e^{-2\unicode[STIX]{x1D70B}if\unicode[STIX]{x1D70F}}\,\text{d}\unicode[STIX]{x1D70F},\end{eqnarray}$$(12)

    View in Article

    $$\begin{eqnarray}S_{x}^{w}(t,f)\equiv \left|F_{s}^{w}(t,f)\right|^{2}.\end{eqnarray}$$(13)

    View in Article

    $$\begin{eqnarray}\mathbf{E}=-c~\hat{\mathbf{n}}\times \mathbf{B},\quad \mathbf{B}=c^{-1}~\hat{\mathbf{n}}\times \mathbf{E},\end{eqnarray}$$(14)

    View in Article

    $$\begin{eqnarray}\displaystyle s_{3}(t) & = & \displaystyle s_{2}(t)+n_{1}(t)+n_{2}(t)+n_{3}(t)+n_{4}(t)\nonumber\\ \displaystyle & = & \displaystyle h_{\text{TL}}(t)\circledast \left[s_{0}(t)+n_{0}(t)\right]+n_{\text{ext}}(t),\end{eqnarray}$$(15)

    View in Article

    $$\begin{eqnarray}s_{2}(t)+{\mathcal{F}}^{-1}\{H_{\text{TL}}^{-1}N_{\text{ext}}\}(t)={\mathcal{F}}^{-1}\{H_{\text{TL}}^{-1}S_{3}\}(t),\end{eqnarray}$$(16)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D6FC}=2\unicode[STIX]{x1D70B}\sqrt{\unicode[STIX]{x1D706}_{c}^{-2}-\unicode[STIX]{x1D706}^{-2}},\end{eqnarray}$$(17)

    View in Article

    $$\begin{eqnarray}G\{\mathbf{L}(s)\}=\frac{sK_{A}\mathbf{L}(s)\cdot A_{\text{eq}}}{1+s\unicode[STIX]{x1D70F}}=\frac{sK_{l}\mathbf{L}(s)\cdot l_{\text{eq}}}{1+s\unicode[STIX]{x1D70F}}\end{eqnarray}$$(18)

    View in Article

    $$\begin{eqnarray}V_{0}=ZA_{\text{eq}}\,\text{d}B/\text{d}t,\end{eqnarray}$$(19)

    View in Article

    $$\begin{eqnarray}\oint _{S}\mathbf{B}\cdot \text{d}\mathbf{s}=\unicode[STIX]{x1D707}_{0}J_{n},\end{eqnarray}$$(20)

    View in Article

    $$\begin{eqnarray}J_{n}=-\frac{1}{L}\int V_{0}\left(t\right)\,\text{d}t,\end{eqnarray}$$(21)

    View in Article

    $$\begin{eqnarray}n_{e}/n_{\text{at}}=1-\exp (-\unicode[STIX]{x1D70E}_{\text{ph}}F_{\text{ph}}),\end{eqnarray}$$(22)

    View in Article

    $$\begin{eqnarray}\text{SE}=k\log (f/2cl_{a})\,[\text{dB}],\end{eqnarray}$$(23)

    View in Article

    Fabrizio Consoli, Vladimir T. Tikhonchuk, Matthieu Bardon, Philip Bradford, David C. Carroll, Jakub Cikhardt, Mattia Cipriani, Robert J. Clarke, Thomas E. Cowan, Colin N. Danson, Riccardo De Angelis, Massimo De Marco, Jean-Luc Dubois, Bertrand Etchessahar, Alejandro Laso Garcia, David I. Hillier, Ales Honsa, Weiman Jiang, Viliam Kmetik, Josef Krása, Yutong Li, Frédéric Lubrano, Paul McKenna, Josefine Metzkes-Ng, Alexandre Poyé, Irene Prencipe, Piotr Ra?czka, Roland A. Smith, Roman Vrana, Nigel C. Woolsey, Egle Zemaityte, Yihang Zhang, Zhe Zhang, Bernhard Zielbauer, David Neely. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e22
    Download Citation