• Laser & Optoelectronics Progress
  • Vol. 60, Issue 23, 2314003 (2023)
Weidong Huang1,2,3, Yitao Zhu2,3, Xu Huang1,2,3,*, Lu Wang2,3, and Xuheng Cheng2,3
Author Affiliations
  • 1Fujian Key Laboratory of Intelligent Machining Texchnology and Equipment (Fujian University of Technology), Fuzhou 350118, Fujian, China
  • 2Advanced Manufacturing Productivity Promotion Center of Fujian Province, Fuzhou 350118, Fujian, China
  • 3Academy of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, China
  • show less
    DOI: 10.3788/LOP222681 Cite this Article Set citation alerts
    Weidong Huang, Yitao Zhu, Xu Huang, Lu Wang, Xuheng Cheng. Effect of TiB2 Content on Microstructure and Properties of in-situ TiB/Ti6Al4V Composites[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2314003 Copy Citation Text show less
    References

    [1] Huang W D, Chen X Y, Huang X et al. Anisotropic study of Ti6Al4V alloy formed by selective laser melting[J]. JOM, 73, 3804-3811(2021).

    [2] Liu Y D, Guo J, Shi W T et al. Mechanical properties of 316L stainless steel porous structure formed by laser powder bed fusion[J]. Chinese Journal of Lasers, 49, 0802018(2022).

    [3] Wei X M, Wang D, Yang Y Q et al. Study on tensile properties of titanium alloy porous structure using selective laser melting[J]. Chinese Journal of Lasers, 48, 1802016(2021).

    [4] Costa M M, Dantas T A, Bartolomeu F et al. Corrosion behaviour of PEEK or β-TCP-impregnated Ti6Al4V SLM structures targeting biomedical applications[J]. Transactions of Nonferrous Metals Society of China, 29, 2523-2533(2019).

    [5] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [6] Gao X P, Xu J Q, Zhou Q et al. Effect of processing parameters on Ti6Al4V-10%B4C composite material prepared using selective laser melting[J]. Chinese Journal of Lasers, 48, 1402012(2021).

    [7] Jin J B, Zhao Y, Zhao S Z et al. Effect of TiN content on microstructure and wear resistance of Ti-based composites produced by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102013(2019).

    [8] Zhang F Y, Gao P P, Tan H et al. Tailoring grain morphology in Ti-6Al-3Mo through heterogeneous nucleation in directed energy deposition[J]. Journal of Materials Science & Technology, 88, 132-142(2021).

    [9] Li X W, Shi S, Shuang H et al. Microstructure, solidification behavior and mechanical properties of Al-Si-Mg-Ti/TiC fabricated by selective laser melting[J]. Additive Manufacturing, 34, 101326(2020).

    [10] Liu X H, Liu Y Z, Zhou Z G et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC-TiH2[J]. Materials Science and Engineering: A, 813, 141171(2021).

    [11] Zhang S Z, Chen Z, Wei P et al. Wear properties of graphene/zirconia biphase nano-reinforced aluminium matrix composites prepared by SLM[J]. Materials Today Communications, 30, 103009(2022).

    [12] Wang R, Gu D D, Xi L X et al. Selective laser melted TiB2/Ti6Al4V graded materials and first-principle calculations[J]. Materials Letters, 254, 33-36(2019).

    [13] Singh N, Hameed P, Ummethala R et al. Selective laser manufacturing of Ti-based alloys and composites: impact of process parameters, application trends, and future prospects[J]. Materials Today Advances, 8, 100097(2020).

    [14] Wu H Y, Dong Y P, Li X W et al. First principle calculations and low cost SLM processing of Ti-TiB composite materials[J]. Materials Science and Engineering: A, 803, 140711(2021).

    [15] Liu L, Minasyan T, Ivanov R et al. Selective laser melting of TiB2-Ti composite with high content of ceramic phase[J]. Ceramics International, 46, 21128-21135(2020).

    [16] Zhou Z G, Liu Y Z, Liu X H et al. Microstructure evolution and mechanical properties of in situ Ti6Al4V-TiB composites manufactured by selective laser melting[J]. Composites Part B: Engineering, 207, 108567(2021).

    [17] Su Y, Luo S C, Meng L et al. Selective laser melting of in situ TiB/Ti6Al4V composites: formability, microstructure evolution and mechanical performance[J]. Acta Metallurgica Sinica (English Letters), 33, 774-788(2020).

    [18] Singh H, Hayat M, Zhang H Z et al. Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites[J]. International Journal of Minerals, Metallurgy, and Materials, 26, 915-924(2019).

    [19] Chen X Y, Huang W D, Zhang W J et al. Multiple targets technology optimization based grey relative analysis of 18Ni300 Die steel formed by selective laser melting[J]. Chinese Journal of Lasers, 47, 0502003(2020).

    [20] Li Y Z, Liu S F, Xue T et al. Comparison of wear behavior of GCr15 bearing steel prepared by selective laser melting (SLM) and electron beam melting (EBM)[J]. Materials Letters, 305, 130726(2021).

    [21] Sen I, Tamirisakandala S, Miracle D B et al. Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys[J]. Acta Materialia, 55, 4983-4993(2007).

    [22] Zhao Z Y, Li J, Bai P K et al. Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting[J]. Metals, 9, 267(2019).

    [23] Zhao S Z, Jin J B, Xie M et al. Effects of scanning speed on microstructure and wear resistance of Cu80Fe20 immiscible coatings prepared by laser cladding[J]. Chinese Journal of Lasers, 46, 0302005(2019).

    Weidong Huang, Yitao Zhu, Xu Huang, Lu Wang, Xuheng Cheng. Effect of TiB2 Content on Microstructure and Properties of in-situ TiB/Ti6Al4V Composites[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2314003
    Download Citation