• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603009 (2019)
Zhang Jialin*, Chen Qian, Zhang Xiangyu, Sun Jiasong, and Zuo Chao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603009 Cite this Article
    Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy: theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009 Copy Citation Text show less
    References

    [1] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9): 967-980.

    [2] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

    [3] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

    [4] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.

    [5] Nomarski G M. Differential microinterferometer with polarized waves[J]. J Phys Radium Paris, 1955, 16: 9S.

    [6] Tsien R Y. The green fluorescent protein[J]. Annual Review of Biochemistry, 1998, 67(1): 509-544.

    [7] Betzig E. Single molecules, cells, and super-resolution optics (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(28): 8034-8053.

    [8] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.

    [9] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

    [10] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging[J]. Science, 2003, 300(5616): 82-86.

    [11] Schneckenburger H, Weber P, Wagner M, et al. Light exposure and cell viability in fluorescence microscopy[J]. Journal of Microscopy, 2012, 245(3): 311-318.

    [12] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10): 1011005. (in Chinese)

    [13] Coskun A F, Ozcan A. Computational imaging, sensing and diagnostics for global health applications[J]. Current Opinion in Biotechnology, 2014, 25: 8-16.

    [14] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15): 13040-13049.

    [15] Xu W, Jericho M H, Meinertzhagen I A, et al. Digital in-line holography for biological applications [J]. Proceedings of the National Academy of Sciences, 2001, 98(20): 11301-11305.

    [16] Greenbaum A, Luo W, Su T-W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9): 889-895.

    [17] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter - theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

    [18] Kou S S, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447-449.

    [19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.

    [20] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Scientific Reports, 2017, 7(1): 7654.

    [21] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    [22] Rodenburg J M. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics[M]. Burlington: Elsevier, 2008: 87-184.

    [23] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

    [24] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4): 1336-1350.

    [25] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

    [26] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9): 503-509.

    [27] Li J, Chen Q, Sun J, et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations[J]. Biomedical Optics Express, 2018, 9(6): 2526-2542.

    [28] Javidi B, Ponce-Díaz R, Hong S-H. Three-dimensional recognition of occluded objects by using computational integral imaging[J]. Optics Letters, 2006, 31(8): 1106-1108.

    [29] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature Mmethods, 2007, 4(9): 717.

    [30] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [31] Elser V. Phase retrieval by iterated projections[J]. JOSA A, 2003, 20(1): 40-55.

    [32] Gonsalves R A. Phase retrieval from modulus data[J]. JOSA, 1976, 66(9): 961-964.

    [33] Candès E, Eldar Y, Strohmer T, et al. Phase retrieval via matrix completion[J]. SIAM Review, 2015, 57(2): 225-251.

    [34] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11): 2501-2504.

    [35] Mico V, Zalevsky Z, García-Martínez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. JOSA A, 2006, 23(12): 3162-3170.

    [36] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22): 5343-5346.

    [37] Ma B, Zimmermann T, Rohde M, et al. Use of Autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5): 492-499.

    [38] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Sciences, 2008, 105(31): 10670-10675.

    [39] Su T, Seo S, Erlinger A, et al. Towards wireless health: lensless on-chip cytometry[J]. Optics and Photonics News, 2008, 19(12): 24-24.

    [40] Seo S, Su T-W, Tseng K D, et al. Lensfree holographic imaging for on-chip cytometry and diagnostics[J]. Lab on a Chip, 2009, 9(6): 777-787.

    [41] Isikman S, Seo S, Sencan I, et al. Lensfree cell holography on a chip: from holographic cell signatures to microscopic reconstruction[C]//2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009: 404-405.

    [42] Lee S A, Leitao R, Zheng G, et al. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis[J]. PLOS ONE, 2011, 6(10): e26127.

    [43] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 16889-16894.

    [44] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4): 411-414.

    [45] Garcia-Sucerquia J, Xu W, Jericho S K, et al. Digital in-line holographic microscopy[J]. Applied Optics, 2006, 45(5): 836-850.

    [46] Garcia-Sucerquia J, Xu W, Jericho M H, et al. Immersion digital in-line holographic microscopy[J]. Optics Letters, 2006, 31(9): 1211-1213.

    [47] Kanka M, Riesenberg R, Kreuzer H J. Reconstruction of high-resolution holographic microscopic images[J]. Optics Letters, 2009, 34(8): 1162-1164.

    [48] Kanka M, Riesenberg R, Petruck P, et al. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers[J]. Optics Letters, 2011, 36(18): 3651-3653.

    [49] Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on a Chip, 2010, 10(11): 1417-1428.

    [50] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11): 11181-11191.

    [51] Hahn J, Lim S, Choi K, et al. Video-rate compressive holographic microscopic tomography[J]. Optics Express, 2011, 19(8): 7289-7298.

    [53] Xiong Z, Melzer J E, Garan J, et al. Optimized sensing of sparse and small targets using lens-free holographic microscopy[J]. Optics Express, 2018, 26(20): 25676.

    [54] Agbana T E, Gong H, Amoah A S, et al. Aliasing, coherence, and resolution in a lensless holographic microscope[J]. Optics Letters, 2017, 42(12): 2271-2274.

    [55] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Applied Optics, 2018, 57(1): A164.

    [56] Allier C, Morel S, Vincent R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy: cell cultures by lens-free microscopy[J]. Cytometry Part A, 2017, 91(5): 433-442.

    [57] Serabyn E, Liewer K, Wallace J K. Resolution optimization of an off-axis lensless digital holographic microscope[J]. Applied Optics, 2018, 57(1): A172.

    [58] Feng S, Wu J. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source[J]. Optics Express, 2017, 25(20): 24735.

    [59] Feng S, Wang M, Wu J. Lensless in-line holographic microscope with Talbot grating illumination[J]. Optics Letters, 2016, 41(14): 3157.

    [60] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 2012, 20(3): 3129-3143.

    [61] Allen L J, Oxley M P. Phase retrieval from series of images obtained by defocus variation[J]. Optics Communications, 2001, 199(1): 65-75.

    [62] Zhang Y, Pedrini G, Osten W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 2003, 11(24): 3234-3241.

    [63] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7): 1276-1279.

    [64] Greenbaum A, Feizi A, Akbari N, et al. Wide-field computational color imaging using pixel super-resolved on-chip microscopy[J]. Optics Express, 2013, 21(10): 12469-12483.

    [65] Greenbaum A, Sikora U, Ozcan A. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging[J]. Lab on a Chip, 2012, 12(7): 1242-1245.

    [66] Zheng G, Ah Lee S, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22): 3125-3129.

    [67] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light: Science & Applications, 2016, 5(4): e16060.

    [68] Hussain A, Li Y, Liu D, et al. Lensless imaging through multiple phase patterns illumination[J]. Journal of Biomedical Optics, 2017, 22(11): 110502.

    [69] Hussain A, Li Y, Liu D, et al. On-chip microscopy using random phase mask scheme[J]. Scientific Reports, 2017, 7(1): 14768.

    [70] Feng S, Wang M, Wu J. Enhanced resolution in lensless in-line holographic microscope by data interpolation and iterative reconstruction[J]. Optics Communications, 2017, 402: 104-108.

    [71] Zuo C, Chen Q, Sun J, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

    [72] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Optics Letters, 2012, 37(4): 707-709.

    [73] Cheng H, Zhang Q, Wei S, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566-1570.

    [74] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.

    [75] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics Express, 2015, 23(11): 14314-14328.

    [76] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1): 11777.

    [77] Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 2018, 43(15): 3714-3717.

    [78] Kesavan S V, Momey F, Cioni O, et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy[J]. Scientific Reports, 2014, 4: 5942.

    [79] Goodman J W. Statistical Optics[M]. Hoboken: John Wiley & Sons, 2015.

    [80] Su T-W, Seo S, Erlinger A, et al. High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip[J]. Biotechnology and Bioengineering, 2009, 102(3): 856-868.

    [81] Ozcan A, Demirci U. Ultra wide-field lens-free monitoring of cells on-chip[J]. Lab on a Chip, 2008, 8(1): 98-106.

    [82] Zhang X, Khimji I, Atakan Gurkan U, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting[J]. Lab on a Chip, 2011, 11(15): 2535-2540.

    [83] Moscelli N, van den Driesche S, Witarski W, et al. An imaging system for real-time monitoring of adherently grown cells[J]. Sensors and Actuators A: Physical, 2011, 172(1): 175-180.

    [84] Bok Kim S, Bae H, Min Cha J, et al. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging[J]. Lab on a Chip, 2011, 11(10): 1801-1807.

    [85] Jin G, Yoo I-H, Pack S P, et al. Lens-free shadow image based high-throughput continuous cell monitoring technique[J]. Biosensors and Bioelectronics, 2012, 38(1): 126-131.

    [86] Dolega M E, Allier C, Kesavan S V, et al. Label-free analysis of prostate acini-like 3D structures by lensfree imaging[J]. Biosensors and Bioelectronics, 2013, 49: 176-183.

    [87] Kwak Y H, Lee J, Lee J, et al. A simple and low-cost biofilm quantification method using LED and CMOS image sensor[J]. Journal of Microbiological Methods, 2014, 107: 150-156.

    [88] Penwill L A, Batten G E, Castagnetti S, et al. Growth phenotype screening of Schizosaccharomyces pombe using a Lensless microscope[J]. Biosensors and Bioelectronics, 2014, 54: 345-350.

    [89] Pushkarsky I, Liu Y, Weaver W, et al. Automated single-cell motility analysis on a chip using lensfree microscopy[J]. Scientific Reports, 2014, 4: 4717.

    [90] Tsai H F, Tsai Y C, Yagur Kroll S, et al. Water pollutant monitoring by a whole cell array through lens-free detection on CCD[J]. Lab on a Chip, 2015, 15(6): 1472-1480.

    [91] Kesavan S V, Garcia F P N Y, Menneteau M, et al. Real-time label-free detection of dividing cells by means of lensfree video-microscopy[J]. Journal of Biomedical Optics, 2014, 19(3): 036004.

    [92] Lee L M, Cui X, Yang C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts[J]. Biomedical Microdevices, 2009, 11(5): 951.

    [93] Coskun A F, Sencan I, Su T W, et al. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects[J]. Optics Express, 2010, 18(10): 10510-10523.

    [94] Coskun A F, Su T W, Ozcan A. Wide field-of-view lens-free fluorescent imaging on a chip[J]. Lab on a Chip, 2010, 10(7): 824-827.

    [95] Shanmugam A, Salthouse C D. Lensless fluorescence imaging with height calculation[J]. Journal of Biomedical Optics, 2014, 19(1): 016002.

    [96] Coskun A F, Sencan I, Su T W, et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip[J]. Analyst, 2011, 136(17): 3512-3518.

    [97] Coskun A F, Sencan I, Su T W, et al. Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view[J]. PLOS ONE, 2011, 6(1): e15955.

    [98] Martinelli L, Choumane H, Ha K N, et al. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light[J]. Applied Physics Letters, 2007, 91(8): 083901.

    [99] Lee S A, Ou X, Lee J E, et al. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor[J]. Optics Letters, 2013, 38(11): 1817-1819.

    [100] Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual Review of Biomedical Engineering, 2016, 18(1): 77-102.

    [101] Khademhosseinieh B, Sencan I, Biener G, et al. Lensfree on-chip imaging using nanostructured surfaces[J]. Applied Physics Letters, 2010, 96(17): 171106.

    [102] Khademhosseinieh B, Biener G, Sencan I, et al. Lensfree color imaging on a nanostructured chip using compressive decoding[J]. Applied Physics Letters, 2010, 97(21): 211112.

    [103] Han C, Pang S, Bower D V, et al. Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator[J]. Analytical Chemistry, 2013, 85(4): 2356-2360.

    [104] Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA, 1972, 62(1): 55-59.

    [105] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79: 745.

    [106] Pech-Pacheco J L, Cristobal G, Chamorro-Martinez J, et al. Diatom autofocusing in brightfield microscopy: a comparative study[C]//Proceedings of 15th International Conference on Pattern Recognition, 2000, 3: 314-31.

    [107] Mudanyali O, Oztoprak C, Tseng D, et al. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy[J]. Lab on a Chip, 2010, 10(18): 2419-2423.

    [108] Denis L, Fournier C, Fournel T, et al. Numerical suppression of the twin image in in-line holography of a volume of micro-objects[J]. Measurement Science and Technology, 2008, 19(7): 074004.

    [109] Hardie R C, Barnard K J, Bognar J G, et al. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system[J]. Optical Engineering, 1998, 37(1): 247-261.

    [110] Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.

    [111] Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1187-1193.

    [112] Mudanyali O, Bishara W, Ozcan A. Lensfree super-resolution holographic microscopy using wetting films on a chip[J]. Optics Express, 2011, 19(18): 17378-17389.

    [113] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 2015, 4(3): e261.

    [114] Goodman J W. Introduction to Fourier Optics[M]. Colorado: Roberts and Company Publishers, 2005.

    [115] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

    [116] Koren G, Polack F, Joyeux D. Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints[J]. JOSA A, 1993, 10(3): 423-433.

    [117] Mudanyali O, McLeod E, Luo W, et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses[J]. Nature Photonics, 2013, 7(3): 247-254.

    [118] Greenbaum A, Zhang Y, Feizi A, et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy[J]. Science Translational Medicine, 2014, 6(267): 267ra175.

    [119] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3: 1717.

    [120] Wei Q, McLeod E, Qi H, et al. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography[J]. Scientific Reports, 2013, 3: 1699.

    [121] Min J, Yao B, Zhou M, et al. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography[J]. Journal of Optics, 2014, 16(12): 125409.

    [122] Bao P, Situ G, Pedrini G, et al. Lensless phase microscopy using phase retrieval with multiple illumination wavelengths[J]. Applied Optics, 2012, 51(22): 5486-5494.

    [123] Meng H, Hussain F. In-line recording and off-axis viewing technique for holographic particle velocimetry[J]. Applied Optics, 1995, 34(11): 1827-1840.

    [124] Isikman S O, Bishara W, Ozcan A. Partially coherent lensfree tomographic microscopy[J]. Applied Optics, 2011, 50(34): H253-H264.

    [125] Isikman S O, Bishara W, Mavandadi S, et al. Lens-free optical tomographic microscope with a large imaging volume on a chip[J]. Proceedings of the National Academy of Sciences, 2011, 108(18): 7296-7301.

    [126] Su T-W, Isikman S O, Bishara W, et al. Multi-angle lensless digital holography for depth resolved imaging on a chip[J]. Optics Express, 2010, 18(9): 9690-9711.

    [127] Berdeu A, Momey F, Laperrousaz B, et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy[J]. Applied Optics, 2017, 56(13): 3939.

    [128] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.

    [129] Greenbaum A, Akbari N, Feizi A, et al. Field-portable pixel super-resolution colour microscope[J]. PLOS ONE, 2013, 8(9): e76475.

    [130] Kim D S, Choi J H, Nam M H, et al. LED and CMOS image sensor based hemoglobin concentration measurement technique[J]. Sensors and Actuators B: Chemical, 2011, 157(1): 103-109.

    [131] Lee J, Kwak Y H, Paek S H, et al. CMOS image sensor-based ELISA detector using lens-free shadow imaging platform[J]. Sensors and Actuators B: Chemical, 2014, 196: 511-517.

    [132] Tanaka T, Saeki T, Sunaga Y, et al. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging[J]. Biosensors and Bioelectronics, 2010, 26(4): 1460-1465.

    [134] Jack K. Video Demystified: a Handbook for the Digital Engineer[M]. Burlington: Elsevier, 2011.

    [135] Ren Z, Xu Z, Lam E Y. Autofocusing in digital holography using deep learning[C]//Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV. International Society for Optics and Photonics, 2018, 10499: 104991V.

    [136] Ren Z, Xu Z, Lam E Y. Learning-based nonparametric autofocusing for digital holography[J]. Optica, 2018, 5(4): 337-344.

    [137] Zhang G, Guan T, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 2018, 26(15): 19388-19405.

    [138] Wang H, Lyu M, Situ G. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18): 22603-22614.

    [139] Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express, 2017, 25(13): 15043-15057.

    [140] Goy A, Arthur K, Li S, et al. Low photon count phase retrieval using deep learning[J]. Physical Review Letters, 2018, 121(24): 243902.

    [141] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803-813.

    [142] Lyu M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7(1): 17865.

    [144] Wang H, Rivenson Y, Jin Y, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy[J]. Nature Methods, 2019, 16(1): 103.

    [145] Nehme E, Weiss L E, Michaeli T, et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning[J]. Optica, 2018, 5(4): 458-464.

    [146] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5): 460-468.

    [147] Rivenson Y, Zhang Y, Günaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141.

    [148] Horisaki R, Fujii K, Tanida J. Single-shot and lensless complex-amplitude imaging with incoherent light based on machine learning[J]. Optical Review, 2018, 25(5): 593-597.

    [149] Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117.

    [150] Ahn D, Lee J, Moon S, et al. Human-level blood cell counting on lens-free shadow images exploiting deep neural networks[J]. The Analyst, 2018, 143(22): 5380-5387.

    [151] Flaccavento G, Lempitsky V, Pope I, et al. Learning to count cells: applications to lens-free imaging of large fields[J]. Microscopic Image Analysis with Applications in Biology, 2011, 1: 3.

    [152] Feizi A, Zhang Y, Greenbaum A, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning[J]. Lab on a Chip, 2016, 16(22): 4350-4358.

    [153] Huang X, Guo J, Wang X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. PLOS ONE, 2014, 9(8): e104539.

    [154] Rempfler M, Kumar S, Stierle V, et al. Cell lineage tracing in lens-free microscopy videos[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017: 3-11.

    [156] Huang X, Wang X, Yan M, et al. A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing[J]. Integration, the VLSI Journal, 2015, 51: 208-218.

    [157] Su T-W, Choi I, Feng J, et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 2013, 3: 1664.

    Zhang Jialin, Chen Qian, Zhang Xiangyu, Sun Jiasong, Zuo Chao. Lens-free on-chip microscopy: theory, advances, and applications[J]. Infrared and Laser Engineering, 2019, 48(6): 603009
    Download Citation