• Photonics Research
  • Vol. 9, Issue 6, 1069 (2021)
Zhishen Tong1、2, Zhentao Liu1, Chenyu Hu1、2, Jian Wang3、4、6、*, and Shensheng Han1、5、7、*
Author Affiliations
  • 1Key Laboratory of Quantum Optics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Data Science, Fudan University, Shanghai 200433, China
  • 4ZJLab, Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433, China
  • 5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 6e-mail: jian_wang@fudan.edu.cn
  • 7e-mail: sshan@mail.shcnc.ac.cn
  • show less
    DOI: 10.1364/PRJ.420326 Cite this Article Set citation alerts
    Zhishen Tong, Zhentao Liu, Chenyu Hu, Jian Wang, Shensheng Han. Preconditioned deconvolution method for high-resolution ghost imaging[J]. Photonics Research, 2021, 9(6): 1069 Copy Citation Text show less
    References

    [1] E. Abbe. Beitr’age zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, 413-468(1873).

    [2] S. Chaudhuri. Super-resolution Imaging, 632(2001).

    [3] J. W. Tukey. The extrapolation, interpolation and smoothing of stationary time series with engineering applications. J. Am. Stat. Assoc., 47, 319-321(1952).

    [4] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astron. J., 79, 745-754(1974).

    [5] A. N. Tikhonov. On the solution of ill-posed problems and the method of regularization. Doklady Akademii Nauk, 151, 501-504(1963).

    [6] J.-L. Starck, E. Pantin, F. Murtagh. Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac., 114, 1051-1069(2002).

    [7] P. Sarder, A. Nehorai. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag., 23, 32-45(2006).

    [8] H.-X. He, X.-S. Xie, Y.-K. Liu, H.-W. Liang, J.-Y. Zhou. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method. J. Innov. Opt. Health Sci., 12, 1930005(2019).

    [9] J. H. Shapiro, R. W. Boyd. The physics of ghost imaging. Quantum Inf. Process., 11, 949-993(2012).

    [10] T. Shirai. Modern aspects of intensity interferometry with classical light. Prog. Opt., 62, 1-72(2017).

    [11] P.-A. Moreau, E. Toninelli, T. Gregory, M. J. Padgett. Ghost imaging using optical correlations. Laser Photon. Rev., 12, 1700143(2018).

    [12] S. Han, H. Yu, X. Shen, H. Liu, W. Gong, Z. Liu. A review of ghost imaging via sparsity constraints. Appl. Sci., 8, 1379(2018).

    [13] T. B. Pittman, Y. Shih, D. Strekalov, A. V. Sergienko. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 52, R3429-R3432(1995).

    [14] D. Strekalov, A. Sergienko, D. Klyshko, Y. Shih. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett., 74, 3600-3603(1995).

    [15] A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato. Ghost imaging with thermal light: comparing entanglement and classicalcorrelation. Phys. Rev. Lett., 93, 093602(2004).

    [16] J. Cheng, S. Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett., 92, 093903(2004).

    [17] E. J. Candes, T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory, 51, 4203-4215(2005).

    [18] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289-1306(2006).

    [19] Z. Tong, Z. Liu, J. Wang, X. Shen, S. Han. Breaking Rayleigh’s criterion via discernibility in high-dimensional light-field space with snapshot ghost imaging(2020).

    [20] C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, S. Han. Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett., 101, 141123(2012).

    [21] Y.-H. He, Y.-Y. Huang, Z.-R. Zeng, Y.-F. Li, J.-H. Tan, L.-M. Chen, L.-A. Wu, M.-F. Li, B.-G. Quan, S.-L. Wang, T.-J. Liang. Single-pixel imaging with neutrons. Sci. Bull., 66, 133-138(2021).

    [22] H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, D. Zhu. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett., 117, 113901(2016).

    [23] X.-B. Song, D.-Q. Xu, H.-B. Wang, J. Xiong, X. Zhang, D.-Z. Cao, K. Wang. Experimental observation of one-dimensional quantum holographic imaging. Appl. Phys. Lett., 103, 131111(2013).

    [24] D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, K. Wang. Lensless ghost imaging of a phase object with pseudo-thermal light. Appl. Phys. Lett., 104, 121113(2014).

    [25] W. Li, Z. Tong, K. Xiao, Z. Liu, Q. Gao, J. Sun, S. Liu, S. Han, Z. Wang. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica, 6, 1515-1523(2019).

    [26] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, S. Han. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep., 6, 26133(2016).

    [27] Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, S. Han. Spectral camera based on ghost imaging via sparsity constraints. Sci. Rep., 6, 25718(2016).

    [28] X.-H. Chen, F.-H. Kong, Q. Fu, S.-Y. Meng, L.-A. Wu. Sub-Rayleigh resolution ghost imaging by spatial low-pass filtering. Opt. Lett., 42, 5290-5293(2017).

    [29] Y. Gao, Y. Bai, X. Fu. Point-spread function in ghost imaging system with thermal light. Opt. Express, 24, 25856-25866(2016).

    [30] Z. Chen, J. Shi, Y. Li, Q. Li, G. Zeng. Super-resolution thermal ghost imaging based on deconvolution. Eur. Phys. J. Appl. Phys., 67, 10501(2014).

    [31] Z. Li, Q. Zhao, W. Gong. Distorted point spread function and image reconstruction for ghost imaging. Opt. Lasers Eng., 139, 106486(2021).

    [32] E. J. Candes. The restricted isometry property and its implications for compressed sensing. C. R. Math., 346, 589-592(2008).

    [33] M. Elad. Optimized projections for compressed sensing. IEEE Trans. Signal Process., 55, 5695-5702(2007).

    [34] J. M. Duarte-Carvajalino, G. Sapiro. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process., 18, 1395-1408(2009).

    [35] E. Tsiligianni, L. P. Kondi, A. K. Katsaggelos. Preconditioning for underdetermined linear systems with sparse solutions. IEEE Signal Process. Lett., 22, 1239-1243(2015).

    [36] X. Liao, H. Li, L. Carin. Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing. SIAM J. Imaging Sci., 7, 797-823(2014).

    [37] X. Yuan. Adaptive step-size iterative algorithm for sparse signal recovery. Signal Process., 152, 273-285(2018).

    [38] M. Benzi. Preconditioning techniques for large linear systems: a survey. J. Comput. Phys., 182, 418-477(2002).

    [39] R. Yao, Q. Pian, X. Intes. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning. Biomed. Opt. Express, 6, 4887-4898(2015).

    [40] A. Jin, B. Yazici, A. Ale, V. Ntziachristos. Preconditioning of the fluorescence diffuse optical tomography sensing matrix based on compressive sensing. Opt. Lett., 37, 4326-4328(2012).

    [41] W. Gong, S. Han. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints. Phys. Lett. A, 376, 1519-1522(2012).

    [42] W. Gong, S. Han. High-resolution far-field ghost imaging via sparsity constraint. Sci. Rep., 5, 9280(2015).

    [43] W. W. Hager. Updating the inverse of a matrix. SIAM Rev., 31, 221-239(1989).

    [44] D. Colquhoun, A. G. Hawkes. A Q-matrix cookbook. Single-channel Recording, 589-633(1995).

    [45] N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, J.-Y. Tourneret. Fast single image super-resolution using a new analytical solution for l2-l2 problems. IEEE Trans. Image Process., 25, 3683-3697(2016).

    [46] M. D. Robinson, C. A. Toth, J. Y. Lo, S. Farsiu. Efficient Fourier-wavelet super-resolution. IEEE Trans. Image Process., 19, 2669-2681(2010).

    [47] R. Neelamani, H. Choi, R. Baraniuk. Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process., 52, 418-433(2004).

    [48] C. Zhang, S. Guo, J. Cao, J. Guan, F. Gao. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express, 22, 30063-30073(2014).

    [49] W. Gong. High-resolution pseudo-inverse ghost imaging. Photon. Res., 3, 234-237(2015).

    [50] F. Ferri, D. Magatti, L. Lugiato, A. Gatti. Differential ghost imaging. Phys. Rev. Lett., 104, 253603(2010).

    [51] J. M. Bioucas-Dias, M. A. Figueiredo. A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16, 2992-3004(2007).

    [52] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [53] S. Gazit, A. Szameit, Y. C. Eldar, M. Segev. Super-resolution and reconstruction of sparse sub-wavelength images. Opt. Express, 17, 23920-23946(2009).

    [54] L. Zhu, W. Zhang, D. Elnatan, B. Huang. Faster storm using compressed sensing. Nat. Methods, 9, 721-723(2012).

    [55] E. J. Candès, C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math., 67, 906-956(2014).

    [56] C.-H. Hung, T. L. Markham. The Moore-Penrose inverse of a partitioned matrix M=(ADBC). Linear Algebra Appl., 11, 73-86(1975).

    [57] J. Wu, E. Li, X. Shen, S. Yao, Z. Tong, C. Hu, Z. Liu, S. Liu, S. Tan, S. Han. Experimental results of the balloon-borne spectral camera based on ghost imaging via sparsity constraints. IEEE Access, 6, 68740-68748(2018).

    Zhishen Tong, Zhentao Liu, Chenyu Hu, Jian Wang, Shensheng Han. Preconditioned deconvolution method for high-resolution ghost imaging[J]. Photonics Research, 2021, 9(6): 1069
    Download Citation