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Ghost imaging (GI) can nonlocally image objects by exploiting the fluctuation characteristics of light fields, where
the spatial resolution is determined by the normalized second-order correlation function g �2�. However, the spa-
tial shift-invariant property of g �2� is distorted when the number of samples is limited, which hinders the de-
convolution methods from improving the spatial resolution of GI. In this paper, based on prior imaging systems,
we propose a preconditioned deconvolution method to improve the imaging resolution of GI by refining the
mutual coherence of a sampling matrix in GI. Our theoretical analysis shows that the preconditioned deconvo-
lution method actually extends the deconvolution technique to GI and regresses into the classical deconvolution
technique for the conventional imaging system. The imaging resolution of GI after preconditioning is restricted to
the detection noise. Both simulation and experimental results show that the spatial resolution of the reconstructed
image is obviously enhanced by using the preconditioned deconvolution method. In the experiment, 1.4-fold
resolution enhancement over Rayleigh criterion is achieved via the preconditioned deconvolution. Our results
extend the deconvolution technique that is only applicable to spatial shift-invariant imaging systems to all
linear imaging systems, and will promote their applications in biological imaging and remote sensing for
high-resolution imaging demands. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.420326

1. INTRODUCTION

Due to diffraction of light fields, optical imaging systems act as
a low-pass filter, which blocks the high-frequency information
of the object [1]. A computational super-resolution imaging
technique aims to recover the high-frequency information of
the object outside the cutoff frequency of the optical imaging
system based on the theory of the analytic continuation and
non-linear operator [2]. In a conventional imaging system,
by assuming the spatial shift-invariant property of the point-
spread function (PSF) of the imaging system, deconvolution
techniques, such as Wiener filtering [3], Richardson-Lucy al-
gorithm [4], and Tikhonov regularization algorithm [5], have
been widely exploited as super-resolution techniques for their
practical feasibility [6–8].

Different from conventional imaging, ghost imaging (GI)
can nonlocally achieve the image of object by conducting a
high-order correlation between the detected signals without
spatial resolution (referred as the object arm) and a reference
light field that does not pass through the object (referred as

the reference arm) [9–12]. GI was originally developed by
utilizing the quantum entangled property of two quantum en-
tangled photons [13,14] and was later demonstrated to be real-
ized with thermal light fields by exploiting the classical
correlation property of the photons [15,16]. The key advan-
tages of GI lie in that it decouples the detection and imaging
processes and encodes the object with a fluctuation of light
fields. The former makes GI more flexible than conventional
imaging systems, and the latter can naturally combine compres-
sive sensing (CS) [17,18] for image acquisition with high
efficiency, and allow objects to be directly imaged in high-
dimensional light-field space [19]. Owing to these advantages,
GI has been widely applied in GI Lidar [20], neutron GI [21],
Fourier-transform GI for X-ray [22], holographic GI [23],
phase-contrast GI [24], and high-speed GI nanoscopy [25].

The diffraction-limited imaging resolution of GI is deter-
mined by the normalized second-order correlation function g �2�

under an ensemble average [22–24,26–28], which is a counter-
part to the PSF in conventional imaging systems [29]. Thus,
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the idea to enhance the imaging resolution of GI by using the
deconvolution technique is reported [30]. However, the spatial
shift-invariant property of g �2� in GI only holds under the en-
semble average, which is not measurable, and it will be dis-
torted within the limited number of samples [31]. Therefore,
the classical deconvolution technique fails to improve the im-
aging resolution of GI, especially for a small number of
samples.

Inspired by the prevalent CS theory [17,18], GI via sparsity
constraints (GISC) can significantly reduce the number of sam-
ples to get the desired image [12]. Specifically, the image of the
object in GISC is recovered by solving an ill-posed problem:

min
x
kxk0, subject to y � Ax, (1)

where y ∈ Rm is the sampling signals measured by a detector at
the object arm, x ∈ Rn is the vectorized image, the sampling
matrix A ∈ Rm×n (m < n) is made up of the reference arm
light-field intensity, and k · k0 denotes the l0-norm. In CS,
the mutual coherence of sampling matrix is vital to affect
the image recovery [32], and smaller mutual coherence gener-
ally leads to better image quality. However, the mutual coher-
ence of the sampling matrix is directly related to the g �2� in GI
[19], and the mutual coherence is inevitably high when the
spatial structures of the object beyond the resolution limited
by g �2� need to be resolvable. Thus, for the high-resolution im-
aging application of GI, its sampling matrix will be a random
high-coherence matrix within a limited number of samples,
which is bad for CS to recover the image.

In the last decades, preconditioned methods have been pro-
posed to reduce the mutual coherence of the random sampling
matrix and improve the reconstruction quality for sparse signals
in CS [33–37]. To be specific, a matrix P in the preconditioned
method is multiplied to both sides of Eq. (1):

min
x
kxk0, subject to Py � PAx: (2)

By optimizing the matrix P, referred to as the preconditioner in
the number linear algebra [38], the mutual coherence of pre-
conditioned sampling matrix PA is smaller than that of sam-
pling matrix A, which contributes to better image recovery
through Eq. (2). However, those existing preconditioned meth-
ods are somewhat sensitive to the unavoidable detection noise,
especially for high-coherence matrices. To mitigate the influ-
ence of the detection noise, a regularized method for precon-
ditioning has been proposed [39,40]. Although the regularized
preconditioned methods have been successfully applied to
practical fluorescence diffuse optical tomography, their precon-
ditioners are designed to be square matrices for the undersam-
pling case (i.e., m < n), which makes their reconstructed
performances highly rely on recovery algorithms to solve
Eq. (2) and be sensitive to the unknown regularization param-
eter as well.

In this paper, aiming at the noisy environment in practical
applications, we propose a preconditioned deconvolution
method to improve the imaging resolution of GI. The theoreti-
cal analysis shows that the preconditioned deconvolution
method is an extension of the deconvolution technique to
GI and reduces to the classical deconvolution technique for
conventional imaging systems. The imaging resolution of GI

after preconditioning is restricted to the detection noise, which
is consistent with the classical deconvolution technique. The
effectiveness of the preconditioned deconvolution method is
demonstrated on the GISC camera, which is a typical paradigm
of the GI technique. Specifically, both simulations and experi-
ments on the GISC camera system display that the imaging
resolution and image quality are obviously enhanced by using
the preconditioned deconvolution method. Moreover, the ex-
perimental results exhibit that 1.4-fold resolution enhancement
over Rayleigh criterion of the conventional imaging system is
achieved via the preconditioned deconvolution method, which
could promote GI in the application of high spatial-resolution
imaging scenarios. We would like to mention that the precon-
ditioned deconvolution method utilizes prior imaging systems
to overcome the diffraction limit, which is different from those
super-resolution imaging methods that mainly focus on the use
of sparsity priors of imaging objects in GI [25,41,42], and it
can also combine prior imaging objects naturally to improve
the imaging resolution furthermore.

2. METHOD

A. Preconditioning
To alleviate the influence of detection noise, the objective func-
tion of the proposed preconditioned method to solve the pre-
conditioner P is as follows:

min
P
kPA − Ik2F � γkPy − PAxk22, (3)

where k · kF denotes the Frobenius norm, and γ is a weight
factor. Different from those existing preconditioned methods,
whose objective function aims to make the Gram matrix of ma-
trix PA approach an identity matrix, the first term of Eq. (3) is
to let the matrix PA approach an identity matrix to refine the
mutual coherence of preconditioned sampling matrix PA, and
the second term of Eq. (3) aims to restrict the amplification of
the detection noise after preconditioning.

Let the derivative of Eq. (3) on matrix P be 0, and one can
find a closed-form solution of Eq. (3):

P ≔ AT �AAT � γσ2I�−1: (4)

Specifically, the derivatives of two terms in Eq. (3) are,
respectively,

∂
∂P

kPA − Ik2F � 2�PA − I�AT , (5)

and

∂
∂P

kPy − PAxk22 � 2σ2P, (6)

where the detection noise v (namely, y − Ax) is assumed as an
additive white Gaussian noise (AWGN), and each element i.i.d.
obeys the uncorrelated Gaussian distribution N �0, σ2�.

Herein we introduce two important lemmas, which will be
useful for our theoretical analysis.

Lemma 1 (Woodbury Formula [43]) The following equal-
ity holds if A−1 and B−1 exist:

�A � CBCT �−1 � A−1 − A−1C�B−1 � CTA−1C�−1CTA−1:
(7)
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Lemma 2 (Approximations [44]) The following equality holds
if A is large and symmetric:

�I� A�−1 � I − A � A2 − A3 � � � � : (8)

Using Eq. (4), the preconditioned sampling matrix PA can be
given as follows:

PA � AT �AAT � γσ2I�−1A

�Eq: �7�
�
ATA
γσ2

−

�
1

γσ2

�
2

ATA
�
I� ATA

γσ2

�
−1

ATA
�

�Eq: �8�ATA�ATA � γσ2I�−1· (9)

In GI, the imaging resolution is characterized by the normal-
ized second-order correlation function g �2�, which plays the role
of the PSF in the conventional imaging system [29–31]. Thus,
the matrix ATA approaches a block circulant matrix for the
large number of samplesm, where the matrix ATA is the matrix
representation of the g�2�. Thus, ATA can be decomposed
as [45]

ATA � FTΛ1F, (10)

where the matrices F and FT are associated with the Fourier
and inverse Fourier transforms (satisfying FFT � FTF � I),
and Λ1 � diag�α1,…, αn� is a diagonal matrix, whose diagonal
elements are the Fourier coefficients of the first column of the
block circulant matrix ATA.

Substituting Eq. (10) into Eq. (9), the preconditioned sam-
pling matrix PA can be given by

PA � FTΛ1∕�Λ1 � γσ2I�F

� FT diag
�

α1
α1 � γσ2

,…,
αi

αi � γσ2
, � � �

�
F � FTΛ2F,

(11)

where the diagonal matrix Λ2 � diag� α1
α1�γσ2

,…, αi
αi�γσ2

, � � ��.
Equation (11) shows that the preconditioned sampling ma-

trix PA is also a block circulant matrix, and the frequency co-
efficient αi∕�αi � γσ2� of the matrix PA approaches one as the
detection noise reaches 0, which implies that the improvement
of spatial resolution of matrix PA is limited to the detection
noise. One can interpret from Eq. (11) that directly multiply-
ing the preconditioner P to the sampling signals y formally is
the same as the deconvolution technique in the classical con-
volution model [46,47]. The difference is that the sampling
matrix A in GI is a random matrix, whereas that in the classical
convolution model is a block circulant matrix. Specifically, for
the spatial shift-invariant imaging system, which can be de-
scribed as a classical convolution model, its sampling matrix
A is a block circulant matrix. Thus, A can be similarly decom-
posed as follows:

A � FTΛ 0
1F, (12)

where Λ 0
1 � diag�α 0

1,…, α 0
n� is a diagonal matrix whose diago-

nal elements are the Fourier coefficients of the PSF of the con-
ventional imaging system. Correspondingly, Eq. (9) becomes

PA � FTΛ 02
1 ∕�Λ 02

1 � γσ2I�F

� FT diag
�

α 02
1

α 02
1 � γσ2

,…,
α 02
i

α 02
i � γσ2

, � � �
�
F, (13)

which regresses into the classical deconvolution technique [47].
We would like to mention that the preconditioned method

for the noiseless case, i.e., σ2 � 0, has the same form as the
pseudo-inverse GI method [48,49]. Unfortunately, the perfor-
mances of the pseudo-inverse GI method are sensitive to the
detection noise, which hampers their practical applications.

B. GISC Camera
As a typical paradigm of the GI technique, the GISC camera
can simultaneously achieve an object’s high-dimensional
(e.g., spatial, spectral, polarized) information with one snapshot
by encoding the high-dimensional information of light fields
irradiating from the object into speckle patterns on a detectable
two-dimensional (2D) plane [27]. Figure 1 shows the setup of
the GISC camera, which applies a spatial random phase modu-
lator (SRPM) after the image plane of conventional imaging
systems, such as a microscope and telescope, to modulate
the light field irradiating from the object into the speckle field
that is detected by detector 2. In the GISC camera, each pixel of
detector 2 acts like a bucket detector or single-pixel detector
and contains information from all pixels in the image, which
is the main feature of the object beam in GI. Correspondingly,
the image of the GISC camera can be reconstructed by con-
ducting a high-order correlation between the detected signals
and the predetermined reference light-field patterns under the
spatial ensemble average. For GI calculating the ensemble aver-
age in the time domain, a bucket detector or single-pixel de-
tector is adopted to measure the modulated signal irradiating
from the objects, where the fluctuation of the illuminating light
fields needs to be changed per measurement. Because a large
number of measurements are needed to obtain the desired im-
age, the GI ensemble averaged in the time domain generally
demands long image acquisition time. By converting the
calculation of the ensemble average in the time domain to
the spatial domain, the GISC camera achieves the image in
one snapshot, which overcomes the shortage of long image

Fig. 1. Experimental setup of the GISC camera. A conventional im-
aging system, which consists of the filter, lens 1 with focus length f 1,
lens 2 with focus length f 2, and iris with diameter D, projects the
object into its image plane. A spatial random phase modulator
(SRPM) is set before detector 2 to modulate the image of the object
into a speckle image, which is recorded on detector 2. For comparison,
a ground-truth image of the object is recorded on detector 1 through
the conventional imaging system with a large aperture diameter of the
iris by another optical path via a beam splitter (BS).
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acquisition time and makes it possible to observe high-speed
dynamic processes. Although the GISC camera needs a certain
detection signal-to-noise ratio (SNR) to guarantee image recov-
ery, its image acquisition is fast because only one snapshot is
required to achieve the image.

In this paper, we focus on improving the spatial resolution of
the GISC camera. By calculating the second-order correlation
function between the intensity fluctuations at the predeter-
mined reference arm and the object arm, the spatial image
of object can be achieved [27]:

ΔG�2,2��xr� � hΔI t�xt�ΔI r�xt ; xr�ixt
∝
Z

T �x 0r�g �2��xr , x 0r�dx 0r , (14)

where T �xr� represents the spatial image of object, I t�xt� is the
speckle image, and I r�xt ; xr� denotes the speckle pattern of the
GISC camera corresponding to one monochrome point light
source at the position xr . xr and xt are 2D vectors on the object
plane and the detection plane of the GISC camera, respectively,
and h·ixt means the spatial ensemble average over the coordi-
nate xt . The normalized second-order correlation function
g �2��xr , x 0r� describes the spatial resolution of the GISC camera.

The spatial image of object can be also retrieved by solving
an inverse problem:

min
x
kxk0 subject to y − ȳ � �A − Ā�x, (15)

where the sampling matrix A is made up of speckle patterns
I r�xt ; xr�, the sampling signal y consists of the speckle image
I t�xt�, x represents the spatial image, and ·̄ denotes an average
operator to calculate the mean value of the columns of matrix A
and vector y. For notational simplicity, denote Φ � A − Ā. As
mentioned in Ref. [19], the mutual coherence of matrix Φ is
equal to the maximum value of g �2��xr , x 0r�, which represents
the correlation of speckle patterns corresponding to the two
nearest points on the object plane. Thus, for the high-resolu-
tion imaging application, the mutual coherence of matrix Φ is
naturally large, which is not good for high-resolution image re-
covery.

3. SIMULATIONS AND EXPERIMENTS

A. Experimental Setup and Construction of Sampling
Matrix
Figure 1 shows the experimental setup of the GISC camera. To
be specific, an object is projected on the image plane through
the conventional imaging system, which is made up of a filter
(FL 532-3, Thorlabs), lens 1 (AF70-300 mm, TAmRon) with
focus length 300 mm, lens 2 (AF70-300 mm, TAmRon) with
focus length 300 mm, and an iris with diameter 25 mm. The
image of the object is modulated into a speckle image by an
SRPM (DGUV 10-1500, Thorlabs), and is directly recorded
on detector 2 (iKon–M, Andor, pixel size of 13 μm). The
SRPM is placed after the image plane of the conventional im-
aging system with distance 9.7 mm, and is set before detector 2
with distance 40 mm. For comparative purposes, the ground-
truth image of the object through the conventional imaging
system with a large aperture diameter is recorded on detector
1 (Stingray F–504B, Allied Vision) at another optical path split
by a 10/90 (R:T) beam splitter (BS043, Thorlabs). The GISC

camera system was built on an indoor optical platform, where
the objects were illuminated by a white light source through the
arc lamp (Arc lamp 66902, Newport).

Before imaging, we need to calibrate the GISC camera for
constructing the sampling matrix A. In the calibration process,
a fiber (core diameter 16 μm) coupling with incident light
(λ � 532 nm) acts as a point source, which is mounted on
an electric translation stage. A series of speckle images are gen-
erated by shifting the point source at a step size of 3 μm in the
whole 400 μm × 400 μm field of view (FoV). Then, the sam-
pling matrix A is built in the following way, namely, each col-
umn of the sampling matrix consists of speckle images by
reshaping a 2D speckle image into a column vector. In the im-
aging process, we just replace the point source with the imaging
object and record the corresponding speckle image on detector
2 with one snapshot, which makes up the sampling signal y in
the same processing manner as that in the calibration process.

B. Simulation Results
In order to validate the proposed preconditioned deconvolution
method for improving the reconstruction performance of the
GISC camera, we carry out numerical simulations. In the sim-
ulations, we adopt the real speckle patterns obtained in the cal-
ibration process, and the sampling signal y is generated via
y � Ax � v. The images of object x are constructed as shown
in Fig. 2. Herein the detection noise v is assumed as an AWGN,
and the noise level is measured by the detection SNR, which is
defined as SNR � 10 log10�ȳ∕σ2� (dB), where ȳ is the mean
values of the sampling signal y, and σ2 is the variance of
the distribution of AWGN.

The first simulation aims to show how effective the pro-
posed preconditioned deconvolution method is in reducing
the mutual coherence of sampling matrices. To this end, we
compare the mutual coherence of the sampling matrix before
and after the proposed preconditioned deconvolution method,
as well as the normalized mutual correlation function. As ob-
served in Figs. 2(a) and 2(b), the mutual coherence of precon-
ditioned matrix PΦ is uniformly smaller than that of original
matrixΦ among the tested sampling rates η � m∕n, wherem is
the number of samples and n is the number of pixels of the
vectorized image x, and the width of the normalized mutual
correlation curve of preconditioned matrix PΦ is sharper than
that of original matrix Φ, which implies that the spatial reso-
lution could be enhanced after preconditioning. One can see
that the mutual coherence of Φ approaches a lower bound
as the sampling rate increases, which is fundamentally restricted
to the resolution limit by the g �2� in GI. Overall, the effective-
ness of the proposed preconditioned deconvolution method
to refine the sampling matrix is clearly demonstrated in the
simulation.

Next, we empirically compare the image reconstruction of
the preconditioned deconvolution method with other ap-
proaches. For comparative purposes, the representative ap-
proaches including differential GI (DGI) [50], two-step
iterative shrinkage/thresholding (TwIST) for sparse signal re-
covery [51], the proposed preconditioned GI (PreGI, namely,
the proposed preconditioner P directly multiplies the sampling
signal y), and the proposed preconditioned deconvolution
method plus TwIST [PreTwIST, namely, solving Eq. (2) with
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the TwIST from the preconditioned sampling signals Py] al-
gorithm are adopted. Figure 2(c) represents the imaging results
of the resolution target and cell image by DGI, PreGI, TwIST,
and PreTwIST algorithms under the detection SNR 25 dB at a
sampling rate of 0.4, and Figs. 2(d) and 2(e) exhibit the com-
parison of image quality under different sampling rates by
adopting the quantitative evaluation metric: peak SNR
(PSNR) [52]. Clearly, the image quality of the GISC camera
is greatly improved after the proposed preconditioned operator.

To investigate the improvement of image quality by the pre-
conditioned deconvolution method in the noisy environment,
we perform simulations and compare the recovery performance
by the abovementioned algorithms under different noisy levels.
In the simulation, the detection SNRs are set from 15 dB to
45 dB with increasing step 5 dB, and the sampling rate is
η � 0.4. Figure 3(a) presents the normalized mutual correla-
tion function of the preconditioned matrix PΦ at different de-
tection SNRs. One can observe that the width of the mutual
correlation curve gets small when the detection SNR increases,
which matches our theoretical analysis results well. Moreover,
both Figs. 3(b)–3(d) show that the image quality of the GISC
camera is indeed improved by the proposed preconditioned de-
convolution method among the tested detection SNRs, and the
improvement gets big as the detection SNR increases. Overall,

the simulation results demonstrate the effectiveness of the pre-
conditioned deconvolution method in refining the sampling
matrix and improving the image quality of the GISC camera.

C. Experimental Results
In this section, we apply the proposed preconditioned decon-
volution method to dealing with the experimental data of the
GISC camera. In the experiment, we image five objects, includ-
ing the transmission objects and reflective objects. Figure 4
shows the imaging results of different objects by the DGI,
PreGI, TwIST, and PreTwIST algorithms. The left column
in Fig. 4 represents the ground-truth images of objects, which
are achieved through a conventional imaging system as shown
in Fig. 1 with an aperture diameter 25 mm of the iris. It can be
observed that the PreTwIST algorithm achieves the best results
compared with the other approaches, especially in clearing
the background noise of the image. Moreover, as shown in
Fig. 4(d), the preconditioned deconvolution method can obvi-
ously improve the spatial resolution of the image compared
with the DGI method.

We also test the recovery performance by using the precon-
ditioned deconvolution method under different sampling rates
and different detection SNRs. In the experiment, the detection
noise is mainly limited to the shot noise, and the detection SNR
is measured by SNR � 10 log10
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the average photon number which can be estimated from the
number of electronics recorded on detector 2. Figure 5 shows
the PSNR of the reconstructed image of the transmission object
resolution target under different sampling rates and different
detection SNRs. It can be observed that the reconstruction
quality is uniformly improved after the preconditioned decon-
volution method among the tested sampling rates and detec-
tion SNRs.

D. Extended to Super-Resolution Imaging
In this section, we extend the preconditioned deconvolution
method to super-resolution imaging. Following the require-
ment of Ref. [19], where the spatial resolution of the modu-

lation module is much higher than that of the conventional
imaging module in the GISC camera, we adjust the parameters
of the GISC camera to make the spatial resolution of the GISC
camera approach the Rayleigh limit of the conventional imag-
ing system. To be specific, the diameter of aperture is set as
10 mm, the distance between the first image plane and the

(a)

(PSNR) 

(d)

(e)

(18.00 dB) 

Ground Truth DGI PreGI TwIST PreTwIST

(c)

(19.84 dB) (22.61 dB) (26.44 dB) 

(17.67 dB) (19.58 dB) (20.96 dB) (23.23 dB) 

(21.33 dB) (22.93 dB) (24.04 dB) (28.62 dB)

(21.87 dB) (23.84 dB) (26.34 dB) (30.99 dB) 

(19.99 dB) (20.83 dB) (20.18 dB) (21.41 dB) 

(b)

Fig. 4. Experimental results of DGI, PreGI, TwIST, and
PreTwIST algorithms for five different objects with a size of
133 × 133 pixels, where the (a)–(c) represent the transmission objects
and (d), (e) denote the reflective objects. The sampling rate for objects
(a), (b) is 0.23, and for objects (c)–(e) is 0.45. The detection SNRs for
objects (a)–(e) are, respectively, 24.8 dB, 24.7 dB, 24.8 dB, 20.0 dB,
and 23.2 dB.

Fig. 5. Experimental comparison of the PNSR results of the reso-
lution target with a size of 133 × 133 pixels by using DGI, PreGI,
TwIST, and PreTwIST algorithms under (a) different sampling rates
and (b) different detection SNRs.
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Fig. 6. Comparison of the normalized mutual correlation function
of the GISC camera and the theoretical result. The theoretical result is
the Rayleigh criterion with incident wavelength 532 nm.
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Fig. 7. Experimental results of resolution target with a size of
120 × 120 pixels for super-resolution imaging. (a) Ground-truth image
of the object is recorded by a conventional imaging system with a large
aperture diameter of 25 mm; (b) diffraction-limited image of the ob-
ject via the conventional imaging system with a small aperture diam-
eter of 10 mm; recovery results by (c) DGI, (d) PreGI, (e) TwIST, and
(f ) PreTwIST; (g) comparison of resolution, intensity profiles ex-
tracted from the cross-section black lines in subfigures (b)–(f ).
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SRPM is changed into 2.7 mm, and the distance between the
SRPM and detector 2 is 15 mm. Figure 6 reveals that the nor-
malized mutual correlation function of the GISC camera ap-
proaches the theoretical Rayleigh limit of the conventional
imaging system at an incident wavelength of 532 nm. The
Rayleigh limit of the conventional imaging system in its image
plane before the SRPM of the GISC camera is about 19.5 μm.

Figure 7 shows reconstructed images of the resolution target
by the aforementioned four algorithms. Compared with the
imaging results of DGI and TwIST algorithms, the proposed
PreGI algorithm and PreTwIST algorithm achieve much
higher imaging resolution. Particularly, the resolution below
13.8 μm can be obviously recognized by PreGI and PreTwIST
algorithms. Considering the Rayleigh criterion 19.5 μm, both
the imaging results of PreGI and PreTwIST algorithms achieve
a 1.4-fold resolution enhancement over the Rayleigh criterion
in this experiment. Moreover, as shown in Figs. 7(d), 7(f ), and
7(g), the imaging result of the PreTwIST algorithm has a much
clearer background and higher resolution than that of PreGI.
Also, a much complicated object butterfly is tested in the ex-
periment. Figure 8 presents images of a butterfly by the afore-
mentioned algorithms. It shows that the PreGI and PreTwIST
algorithms achieve higher imaging resolution than DGI and
TwIST algorithms. Overall, the proposed preconditioned de-
convolution method exhibits competitive advantages in
super-resolution imaging.

4. DISCUSSION AND CONCLUSION

For conventional imaging systems, by exploiting the sparsity-
imposing priors of imaging objects and the prior information of
imaging systems with the assumption of the spatial shift-
invariant property of the PSF, super-resolution imaging meth-
ods via sparsity constraints, which are based on the sparsity pri-
ors of imaging objects, and the deconvolution techniques that

use the prior of the PSF of imaging systems have been widely
studied [7,8,53–55]. However, existing GI techniques to im-
prove the imaging resolution mainly focus on the use of sparsity
priors of imaging objects in reconstruction [25,41,42], and
rarely take prior imaging systems into account, because the spa-
tial shift-invariant property of g �2� is distorted within the lim-
ited number of samples. In this work, with the proposed
preconditioned deconvolution method based on prior GI sys-
tems, the classical deconvolution method is extended to GI sys-
tems for improving the imaging resolution. The simulation and
experimental results demonstrate that both the methods using
the sparsity prior of imaging objects and the proposed precon-
ditioned deconvolution method applying the prior of imaging
systems can effectively improve the imaging resolution of GI.
Moreover, the combination of the sparsity prior of imaging ob-
jects and the prior of imaging systems achieves the best perfor-
mance in the improvement of GI’s imaging resolution.

For linear imaging systems, where the imaging model of
those systems can be expressed as y � Ax and the sampling
matrix A can be structured matrices or random matrices, such
as the fluorescent microscopy, telescope, aperture coding imag-
ing system, computational GI, and single-pixel imaging, the
preconditioned deconvolution method offers new possibilities
to improve the imaging performance of all those systems.
Although the computational cost of the inverse operator for a
large-scale matrix in the proposed preconditioned deconvolu-
tion method is inevitably high, the preconditioner P can be
obtained in advance through highly effective computation
servers. Moreover, the computational cost for the inverse oper-
ator is expected to decrease by dividing a large-scale matrix into
several small-scale matrices and further solving a partitioned
matrix [56].

Existing preconditioned methods achieving the precondi-
tioner are to make the Gram matrix of the preconditioned sam-
pling matrix PA approach an identity matrix [33–37,39,40].
Those Gram-matrix methods are mathematically strict because
the mutual coherence of a preconditioned sampling matrix
equals the largest non-diagonal element of its Gram matrix.
However, the objective function of those Gram-matrix meth-
ods is a non-convex function, and the optimal preconditioner P
is obtained in an iterative fashion. Different from those Gram-
matrix preconditioned methods, the proposed preconditioned
method is to let the preconditioned sampling matrix PA di-
rectly approach an identity matrix. Although it is an indirect
way in mathematics to make its Gram matrix reach the identity
matrix, thereby reducing the mutual coherence, the objective
function of the proposed method is a convex function, which
exists within the optimal closed-form solution. Moreover, the
idea to make the preconditioned sampling matrix PA close to
the identity matrix can reduce the interference between the ad-
jacent pixels of image x that pass through the imaginary system
corresponding to the preconditioned sampling matrix PA.
Therefore, combined with the noise constraint, the objective
function of the proposed preconditioned method has clear
physical interpretations.

In conclusion, based on prior imaging systems, we presented
a preconditioned deconvolution method to improve the spatial
resolution of GI by refining the mutual coherence of the

(a) (b)

(d)

(c)

(e) (f)

Ground Truth Diffraction-limited image DGI

PreGI TwIST PreTwIST

Fig. 8. Experimental results of a butterfly target with a size of
120 × 120 pixels for super-resolution imaging. (a) Ground-truth image
of the object is recorded by a conventional imaging system with a large
aperture diameter of 25 mm; (b) diffraction-limited image of the ob-
ject via the conventional imaging system with a small aperture diam-
eter of 10 mm; recovery results by (c) DGI, (d) PreGI, (e) TwIST, and
(f ) PreTwIST.
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sampling matrix corresponding to the imaging system. Our
theoretical analysis shows that the spatial resolution of GI after
preconditioning is still restricted to the detection noise, and the
preconditioning method actually is an extension of the classical
deconvolution technique of GI. As a typical paradigm of the GI
technique, the GISC camera was implemented to validate the
effectiveness of the proposed preconditioned deconvolution
method. Both simulation and experimental results demonstrate
that the spatial resolution and image quality of the GISC cam-
era are greatly enhanced by using the preconditioned deconvo-
lution method. Owing to the high efficiency of information
acquisition, the GISC camera has been successfully applied
to fluorescent microscopy [25] and remote sensing [27,57].
Therefore, in conjunction with the GISC camera, the precon-
ditioned deconvolution method is expected to promote the ap-
plications of GI for high spatial and temporal resolution
imaging scenarios, such as live cells imaging and remote
sensing.

Funding. National Key Research and Development
Program of China (2017YFB0503303); National Natural
Science Foundation of China (61991454, 11627811,
61971146); Shanghai Municipal Science and Technology
Major Project (2018SHZDZX01); Open Project of Chinese
Academy of Sciences.

Disclosures. The authors declare no conflicts of interest.

REFERENCES
1. E. Abbe, Beitr’age zur Theorie des Mikroskops und der mikroskopi-

schen Wahrnehmung (Archiv f’ur Mikroskopische Anatomie, 1873),
pp. 413–468.

2. S. Chaudhuri, Super-resolution Imaging (Springer, 2001), Vol. 632.
3. J. W. Tukey, “The extrapolation, interpolation and smoothing of sta-

tionary time series with engineering applications,” J. Am. Stat.
Assoc. 47, 319–321 (1952).

4. L. B. Lucy, “An iterative technique for the rectification of observed dis-
tributions,” Astron. J. 79, 745–754 (1974).

5. A. N. Tikhonov, “On the solution of ill-posed problems and the method
of regularization,” in Doklady Akademii Nauk (Russian Academy of
Sciences, 1963), Vol. 151, pp. 501–504.

6. J.-L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy:
a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).

7. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluores-
cence microscopy images,” IEEE Signal Process. Mag. 23,
32–45 (2006).

8. H.-X. He, X.-S. Xie, Y.-K. Liu, H.-W. Liang, and J.-Y. Zhou, “Exploiting
the point spread function for optical imaging through a scattering
medium based on deconvolution method,” J. Innov. Opt. Health
Sci. 12, 1930005 (2019).

9. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,”
Quantum Inf. Process. 11, 949–993 (2012).

10. T. Shirai, “Modern aspects of intensity interferometry with classical
light,” Prog. Opt. 62, 1–72 (2017).

11. P.-A. Moreau, E. Toninelli, T. Gregory, andM. J. Padgett, “Ghost imag-
ing using optical correlations,” Laser Photon. Rev. 12, 1700143 (2018).

12. S. Han, H. Yu, X. Shen, H. Liu, W. Gong, and Z. Liu, “A review of ghost
imaging via sparsity constraints,” Appl. Sci. 8, 1379 (2018).

13. T. B. Pittman, Y. Shih, D. Strekalov, and A. V. Sergienko, “Optical im-
aging by means of two-photon quantum entanglement,” Phys. Rev. A
52, R3429–R3432 (1995).

14. D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of
two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74,
3600–3603 (1995).

15. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging
with thermal light: comparing entanglement and classicalcorrelation,”
Phys. Rev. Lett. 93, 093602 (2004).

16. J. Cheng and S. Han, “Incoherent coincidence imaging and its appli-
cability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).

17. E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory 51, 4203–4215 (2005).

18. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52,
1289–1306 (2006).

19. Z. Tong, Z. Liu, J. Wang, X. Shen, and S. Han, “Breaking Rayleigh’s
criterion via discernibility in high-dimensional light-field space with
snapshot ghost imaging,” arXiv:2004.00135 (2020).

20. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han,
“Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101,
141123 (2012).

21. Y.-H. He, Y.-Y. Huang, Z.-R. Zeng, Y.-F. Li, J.-H. Tan, L.-M.
Chen, L.-A. Wu, M.-F. Li, B.-G. Quan, S.-L. Wang, and T.-J. Liang,
“Single-pixel imaging with neutrons,” Sci. Bull. 66, 133–138 (2021).

22. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-
transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117,
113901 (2016).

23. X.-B. Song, D.-Q. Xu, H.-B. Wang, J. Xiong, X. Zhang, D.-Z. Cao, and
K. Wang, “Experimental observation of one-dimensional quantum
holographic imaging,” Appl. Phys. Lett. 103, 131111 (2013).

24. D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B.
Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase
object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113
(2014).

25. W. Li, Z. Tong, K. Xiao, Z. Liu, Q. Gao, J. Sun, S. Liu, S. Han, and Z.
Wang, “Single-frame wide-field nanoscopy based on ghost imaging
via sparsity constraints,” Optica 6, 1515–1523 (2019).

26. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-
dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep.
6, 26133 (2016).

27. Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. Han, “Spectral camera
based on ghost imaging via sparsity constraints,” Sci. Rep. 6, 25718
(2016).

28. X.-H. Chen, F.-H. Kong, Q. Fu, S.-Y. Meng, and L.-A. Wu, “Sub-
Rayleigh resolution ghost imaging by spatial low-pass filtering,”
Opt. Lett. 42, 5290–5293 (2017).

29. Y. Gao, Y. Bai, and X. Fu, “Point-spread function in ghost imaging
system with thermal light,” Opt. Express 24, 25856–25866 (2016).

30. Z. Chen, J. Shi, Y. Li, Q. Li, and G. Zeng, “Super-resolution thermal
ghost imaging based on deconvolution,” Eur. Phys. J. Appl. Phys. 67,
10501 (2014).

31. Z. Li, Q. Zhao, and W. Gong, “Distorted point spread function and im-
age reconstruction for ghost imaging,” Opt. Lasers Eng. 139, 106486
(2021).

32. E. J. Candes, “The restricted isometry property and its implications for
compressed sensing,” C. R. Math. 346, 589–592 (2008).

33. M. Elad, “Optimized projections for compressed sensing,” IEEE
Trans. Signal Process. 55, 5695–5702 (2007).

34. J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse
signals: simultaneous sensing matrix and sparsifying dictionary opti-
mization,” IEEE Trans. Image Process. 18, 1395–1408 (2009).

35. E. Tsiligianni, L. P. Kondi, and A. K. Katsaggelos, “Preconditioning for
underdetermined linear systems with sparse solutions,” IEEE Signal
Process. Lett. 22, 1239–1243 (2015).

36. X. Liao, H. Li, and L. Carin, “Generalized alternating projection for
weighted-2,1 minimization with applications to model-based compres-
sive sensing,” SIAM J. Imaging Sci. 7, 797–823 (2014).

37. X. Yuan, “Adaptive step-size iterative algorithm for sparse signal re-
covery,” Signal Process. 152, 273–285 (2018).

38. M. Benzi, “Preconditioning techniques for large linear systems: a sur-
vey,” J. Comput. Phys. 182, 418–477 (2002).

39. R. Yao, Q. Pian, and X. Intes, “Wide-field fluorescence molecular
tomography with compressive sensing based preconditioning,”
Biomed. Opt. Express 6, 4887–4898 (2015).

40. A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, “Preconditioning of the
fluorescence diffuse optical tomography sensing matrix based on
compressive sensing,” Opt. Lett. 37, 4326–4328 (2012).

1076 Vol. 9, No. 6 / June 2021 / Photonics Research Research Article

https://doi.org/10.2307/2280758
https://doi.org/10.2307/2280758
https://doi.org/10.1086/111605
https://doi.org/10.1086/342606
https://doi.org/10.1109/MSP.2006.1628876
https://doi.org/10.1109/MSP.2006.1628876
https://doi.org/10.1142/S1793545819300052
https://doi.org/10.1142/S1793545819300052
https://doi.org/10.1007/s11128-011-0356-5
https://doi.org/10.1016/bs.po.2017.01.001
https://doi.org/10.1002/lpor.201700143
https://doi.org/10.3390/app8081379
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevA.52.R3429
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.74.3600
https://doi.org/10.1103/PhysRevLett.93.093602
https://doi.org/10.1103/PhysRevLett.92.093903
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1063/1.4757874
https://doi.org/10.1063/1.4757874
https://doi.org/10.1016/j.scib.2020.09.030
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1103/PhysRevLett.117.113901
https://doi.org/10.1063/1.4822423
https://doi.org/10.1063/1.4869959
https://doi.org/10.1063/1.4869959
https://doi.org/10.1364/OPTICA.6.001515
https://doi.org/10.1038/srep26133
https://doi.org/10.1038/srep26133
https://doi.org/10.1038/srep25718
https://doi.org/10.1038/srep25718
https://doi.org/10.1364/OL.42.005290
https://doi.org/10.1364/OE.24.025856
https://doi.org/10.1051/epjap/2014140122
https://doi.org/10.1051/epjap/2014140122
https://doi.org/10.1016/j.optlaseng.2020.106486
https://doi.org/10.1016/j.optlaseng.2020.106486
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1109/TSP.2007.900760
https://doi.org/10.1109/TSP.2007.900760
https://doi.org/10.1109/TIP.2009.2022459
https://doi.org/10.1109/LSP.2015.2392000
https://doi.org/10.1109/LSP.2015.2392000
https://doi.org/10.1137/130936658
https://doi.org/10.1016/j.sigpro.2018.06.002
https://doi.org/10.1006/jcph.2002.7176
https://doi.org/10.1364/BOE.6.004887
https://doi.org/10.1364/OL.37.004326


41. W. Gong and S. Han, “Experimental investigation of the quality of
lensless super-resolution ghost imaging via sparsity constraints,”
Phys. Lett. A 376, 1519–1522 (2012).

42. W. Gong and S. Han, “High-resolution far-field ghost imaging via spar-
sity constraint,” Sci. Rep. 5, 9280 (2015).

43. W. W. Hager, “Updating the inverse of a matrix,” SIAM Rev. 31,
221–239 (1989).

44. D. Colquhoun and A. G. Hawkes, “A Q-matrix cookbook,” in Single-
channel Recording (Springer, 1995), pp. 589–633.

45. N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, and J.-Y.
Tourneret, “Fast single image super-resolution using a new analytical
solution for l2-l2 problems,” IEEE Trans. Image Process. 25, 3683–
3697 (2016).

46. M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-
wavelet super-resolution,” IEEE Trans. Image Process. 19, 2669–
2681 (2010).

47. R. Neelamani, H. Choi, and R. Baraniuk, “Forward: Fourier-wavelet
regularized deconvolution for ill-conditioned systems,” IEEE Trans.
Signal Process. 52, 418–433 (2004).

48. C. Zhang, S. Guo, J. Cao, J. Guan, and F. Gao, “Object reconstitution
using pseudo-inverse for ghost imaging,” Opt. Express 22, 30063–
30073 (2014).

49. W. Gong, “High-resolution pseudo-inverse ghost imaging,” Photon.
Res. 3, 234–237 (2015).

50. F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imag-
ing,” Phys. Rev. Lett. 104, 253603 (2010).

51. J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iter-
ative shrinkage/thresholding algorithms for image restoration,” IEEE
Trans. Image Process. 16, 2992–3004 (2007).

52. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image qual-
ity assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process. 13, 600–612 (2004).

53. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and
reconstruction of sparse sub-wavelength images,” Opt. Express 17,
23920–23946 (2009).

54. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using com-
pressed sensing,” Nat. Methods 9, 721–723 (2012).

55. E. J. Candès and C. Fernandez-Granda, “Towards a mathematical
theory of super-resolution,” Commun. Pure Appl. Math. 67, 906–
956 (2014).

56. C.-H. Hung and T. L. Markham, “The Moore-Penrose inverse of

a partitioned matrix M �
�
A D
B C

�
,” Linear Algebra Appl. 11, 73–

86 (1975).
57. J. Wu, E. Li, X. Shen, S. Yao, Z. Tong, C. Hu, Z. Liu, S. Liu, S. Tan, and

S. Han, “Experimental results of the balloon-borne spectral camera
based on ghost imaging via sparsity constraints,” IEEE Access 6,
68740–68748 (2018).

Research Article Vol. 9, No. 6 / June 2021 / Photonics Research 1077

https://doi.org/10.1016/j.physleta.2012.03.027
https://doi.org/10.1038/srep09280
https://doi.org/10.1137/1031049
https://doi.org/10.1137/1031049
https://doi.org/10.1109/TIP.2016.2567075
https://doi.org/10.1109/TIP.2016.2567075
https://doi.org/10.1109/TIP.2010.2050107
https://doi.org/10.1109/TIP.2010.2050107
https://doi.org/10.1109/TSP.2003.821103
https://doi.org/10.1109/TSP.2003.821103
https://doi.org/10.1364/OE.22.030063
https://doi.org/10.1364/OE.22.030063
https://doi.org/10.1364/PRJ.3.000234
https://doi.org/10.1364/PRJ.3.000234
https://doi.org/10.1103/PhysRevLett.104.253603
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1109/TIP.2007.909319
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1364/OE.17.023920
https://doi.org/10.1364/OE.17.023920
https://doi.org/10.1038/nmeth.1978
https://doi.org/10.1002/cpa.21455
https://doi.org/10.1002/cpa.21455
https://doi.org/10.1016/0024-3795(75)90118-4
https://doi.org/10.1016/0024-3795(75)90118-4
https://doi.org/10.1109/ACCESS.2018.2879849
https://doi.org/10.1109/ACCESS.2018.2879849

	XML ID funding

