• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 011407 (2020)
Dingjiang Fang1、2, Xinglin Tong1、*, Cui Zhang1, Chengwei Deng1, and Pengfei Wang1
Author Affiliations
  • 1National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • 2School of Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • show less
    DOI: 10.3788/LOP57.011407 Cite this Article Set citation alerts
    Dingjiang Fang, Xinglin Tong, Cui Zhang, Chengwei Deng, Pengfei Wang. High-Speed Swept Laser Source Based on Optical Buffer Device Within Ring Cavity[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011407 Copy Citation Text show less
    References

    [1] Li P, Yang S S, Ding Z H et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [2] Song S Y, Li Z L, Gao Y H et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles[J]. Chinese Journal of Lasers, 45, 0807001(2018).

    [3] Xiong Q, Tong X L, Deng C W et al. A novel Mach-Zehnder interferometer using eccentric-core fiber design for optical coherence tomography[J]. Sensors, 18, 1540(2018).

    [4] Wang X, Li Z L, Nan N et al. A method to improve sensitivity of swept source optical coherence tomography system[J]. Chinese Journal of Lasers, 44, 0807002(2017).

    [5] Lu X Q. Development of wide bandwidth swept source with narrow instantaneous linewidth[D]. Hangzhou: Zhejiang University, 13-18(2014).

    [6] Shen Y. The development and application of the recirculation loops swept source optical coherence tomography[D]. Hangzhou: Zhejiang University, 17-25(2015).

    [7] Chen M H. Development of swept laser source for optical coherence tomography[D]. Hangzhou: Zhejiang University, 29-34(2011).

    [8] Lim H, de Boer J F, Park B H et al. . Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range[J]. Optics Express, 14, 5937-5944(2006).

    [9] Xu R R. High-speed broad bandwidth swept source at 1 μm[D]. Chengdu: University of Electronic Science and Technology of China, 14-21(2015).

    [10] Drexler W, Liu M Y, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality[J]. Journal of Biomedical Optics, 19, 071412(2014).

    [11] Ryu S Y, You J W, Kwak Y K et al. Design of a prism to compensate the image-shifting error of the acousto-optic tunable filter[J]. Optics Express, 16, 17138-17147(2008).

    [12] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005).

    [13] Lee H S, Jung E J, Jeong M Y et al. Broadband wavelength-swept Raman laser for Fourier-domain mode locked swept-source OCT[J]. Journal of the Optical Society of Korea, 13, 316-320(2009).

    [14] Yun S H, Boudoux C, Pierce M C et al. Extended-cavity semiconductor wavelength-swept laser for biomedical imaging[J]. IEEE Photonics Technology Letters, 16, 293-295(2004).

    [15] Oh W Y, Yun S H, Tearney G J et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser[J]. Optics Letters, 30, 3159-3161(2005).

    [16] Klein T, Wieser W, Eigenwillig C M et al. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Optics Express, 19, 3044-3062(2011).

    [17] Zhang J, Wang Q, Rao B et al. Swept laser source at 1 μm for Fourier domain optical coherence tomography[J]. Applied Physics Letters, 89, 073901(2006).

    [18] Yamashita S, Takubo Y. Wide and fast wavelength-swept fiber lasers based on dispersion tuning and their application to optical coherence tomography[J]. Photonic Sensors, 3, 320-331(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ131114000083w3y6B8

    [19] Marschall S, Klein T, Wieser W et al. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier[J]. Optics Express, 18, 15820-15831(2010).

    [20] Huber R, Wojtkowski M, Fujimoto J G. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006).

    Dingjiang Fang, Xinglin Tong, Cui Zhang, Chengwei Deng, Pengfei Wang. High-Speed Swept Laser Source Based on Optical Buffer Device Within Ring Cavity[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011407
    Download Citation