• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 2, 197 (2019)
Houbing LU1、*, Jun ZHAO1, and ZeJie YIN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.02.011 Cite this Article
    LU Houbing, ZHAO Jun, YIN ZeJie. Implementation of FPGA based privacy amplification for high speed QKD system[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 197 Copy Citation Text show less
    References

    [2] Dixon A R, Dynes J F, Lucamarini M, et al. High speed prototype quantum key distribution system and long term field trial [J]. Optics Express, 2015, 23(6): 7583-7592.

    [3] Islam NT, Lim C, Cahall C, et al. Provably secure and high-rate quantum key distribution with time-bin qudits [J]. Science Advances, 2017, 3(11): e1701491.

    [4] Yin Hualei, Chen Tengyun, Yu Zongwen, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber [J]. Physical Review Letters, 2016, 117(19): 190501.

    [5] Liao Shengkai, Cai Wenqi, Liu Weiyue, et al. Satellite-to-ground quantum key distribution [J]. Nature, 2017, 549(7670): 43-47.

    [6] Liao Shengkai, Cai Wenqi, Handsteiner Johannes, et al. Satellite-relayed intercontinental quantum network [J]. Physical Review Letters, 2018, 120(3): 030501.

    [8] Hwang WY. Quantum key distribution with high loss: toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901.

    [9] Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.

    [10] Wang Xiangbin. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503.

    [14] Assche G Van. Quantum Cryptography and Secret-Key Distillation [M]. Cambridge University Press, 2006, (38): 3-6.

    [15] Takahashi R, Tanizawa Y, Dixon A R. High-speed implementation of privacy amplification in quantum key distribution [C]. th Int. Conf. Quantum Cryptography, 2016.

    [16] Zhang Chunmei, Li Mo, Huang Jingzheng, et al. Fast implementation of length-adaptive privacy amplification in quantum key distribution [J]. China Physical B, 2014, 23(9): 090310.

    [17] Bennett Charles H, Brassard Gilles, Crepeau Claude, et al. Generalized privacy amplification [J]. IEEE Trans. On Information Theory, 1995, 41(6): 1915-1923.

    [18] Krawczyk Hugo. LFSR-based hashing and authentication [C]. Advances in Cryptology-crypto 94, International Cryptology Conference, Santa Barbara, California, Usa, August, 1994, (839): 129-139.

    [19] Ma Xiongfeng, Qi Bing, Zhao Yi, et al. Practical decoy state for quantum key distribution [J]. Physical Review A, 2005, 72(1): 012326.

    [20] Lo HoiKwong, Hoi Fung Chau, Ardehali Mohammed. Efficient quantum key distribution scheme and a proof of its unconditional security [J]. Journal of Cryptology, 2005, 18(2): 133-165.

    [21] Wei Zhengchao, Wang Weilong, et al. Decoy-state quantum key distribution with biased basis choice [J]. Scientific Reports, 2013 , 3(6147): 2453.

    [22] Tomamichel Marco, Lim C C W, Gisin Nicolas, et al. Tight finite-key analysis for quantum cryptography [J]. Nature Communications, 2012, 3(48): 634.

    [23] Fung C H, Ma Xiongfeng, Chau H F. Practical issues in quantum-key-distribution post processing [J]. Physical Review A, 2010, 81(1): 012318.

    LU Houbing, ZHAO Jun, YIN ZeJie. Implementation of FPGA based privacy amplification for high speed QKD system[J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 197
    Download Citation