• Chinese Optics Letters
  • Vol. 22, Issue 1, 011301 (2024)
Dejun Kong1, Hao Lu1, Pengjun Wang2、*, Qiang Fu3, Shixun Dai1、4, Weiwei Chen1、**, Yuefeng Wang1, Bohao Zhang1, Lingxiao Ma1, Jun Li1, Tingge Dai5, and Jianyi Yang5
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • 2College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
  • 3College of Science and Technology, Ningbo University, Ningbo 315300, China
  • 4Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
  • 5Department of Information Science and Electronics Engineering and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.3788/COL202422.011301 Cite this Article Set citation alerts
    Dejun Kong, Hao Lu, Pengjun Wang, Qiang Fu, Shixun Dai, Weiwei Chen, Yuefeng Wang, Bohao Zhang, Lingxiao Ma, Jun Li, Tingge Dai, Jianyi Yang. Experimental demonstration of a flexible-grid 1 × (2 × 3) mode- and wavelength-selective switch using silicon microring resonators and counter-tapered couplers[J]. Chinese Optics Letters, 2024, 22(1): 011301 Copy Citation Text show less

    Abstract

    A flexible-grid 1×(2×3) mode- and wavelength-selective switch which comprises counter-tapered couplers and silicon microring resonators has been proposed, optimized, and demonstrated experimentally in this work. By carefully thermally tuning phase shifters and silicon microring resonators, mode and wavelength signals can be independently and flexibly conveyed to any one of the output ports, and different bandwidths can be generated as desired. The particle swarm optimization algorithm and finite difference time-domain method are employed to optimize structural parameters of the two-mode (de)multiplexer and crossing waveguide. The bandwidth-tunable wavelength-selective optical router composed of 12 microring resonators is studied by taking advantage of the transfer matrix method. Measurement results show that, for the fabricated module, cross talk less than -10.18 dB, an extinction ratio larger than 17.41 dB, an in-band ripple lower than 0.79 dB, and a 3-dB bandwidth changing from 0.38 to 1.05 nm are obtained, as the wavelength-channel spacing is 0.40 nm. The corresponding response time is measured to be 13.64 µs.
    vel+1=wT×vel+r1×γ1×(iblpsl)+r2×γ2×(gblpsl),

    View in Article

    psl+1=psl+vel,

    View in Article

    DU(D)1=DrU(D)1·DrU(D)4·ξ·ThU(D)5·ξ·ThU(D)6+ThU(D)1·ξ·ejΔφU(D)1·DrU(D)2·DrU(D)5·ξ·ThU(D)6+ThU(D)1·ξ·ejΔφU(D)1·ThU(D)2·ξ·ejΔφU(D)2·DrU(D)3·DrU(D)6,

    View in Article

    DU(D)2=DrU(D)1·ThU(D)4·ξ·DrU(D)7·ξ·ThU(D)8·ξ·ThU(D)9+ThU(D)1·ξ·ejΔφU(D)1·DrU(D)2·ThU(D)5·ξ·DrU(D)8·ξ·ThU(D)9+ThU(D)1·ξ·ejΔφU(D)1·ThU(D)2·ξ·ejΔφU(D)2·DrU(D)3·ξ·ThU(D)6·DrU(D)9,

    View in Article

    DU(D)3=DrU(D)1·ThU(D)4·ξ·ThU(D)7·ξ·DrU(D)10·ξ·ThU(D)11·ξ·ThU(D)12+ThU(D)1·ξ·ejΔφU(D)1·DrU(D)2·ξ·ThU(D)5·ξ·ThU(D)8·DrU(D)11·ξ·ThU(D)12+ThU(D)1·ξ·ejΔφU(D)1·ThU(D)2·ξ·ejΔφU(D)2·DrU(D)3·ξ·ThU(D)6·ξ·ThU(D)9·DrU(D)12,

    View in Article

    TU(D)1=DrU(D)1·ξ·ThU(D)4·ξ·ThU(D)7·ξ·ThU(D)10,

    View in Article

    TU(D)2=ThU(D)1·ξ·ejΔφU(D)1·DrU(D)2·ξ·ThU(D)5·ξ·ThU(D)8·ξ·ThU(D)11,

    View in Article

    TU(D)3=ThU(D)1·ξ·ejΔφU(D)1·ThU(D)2·ξ·ejΔφU(D)2·DrU(D)3·ξ·ThU(D)6·ξ·ThU(D)9·ξ·ThU(D)12,

    View in Article

    ThU(D)i=1k2(1αejθU(D)i)1α(1k2)ejθU(D)i,

    View in Article

    DrU(D)i=α14k2ejθU(D)i41α(1k2)ejθU(D)i,

    View in Article

    Dejun Kong, Hao Lu, Pengjun Wang, Qiang Fu, Shixun Dai, Weiwei Chen, Yuefeng Wang, Bohao Zhang, Lingxiao Ma, Jun Li, Tingge Dai, Jianyi Yang. Experimental demonstration of a flexible-grid 1 × (2 × 3) mode- and wavelength-selective switch using silicon microring resonators and counter-tapered couplers[J]. Chinese Optics Letters, 2024, 22(1): 011301
    Download Citation