• Acta Optica Sinica
  • Vol. 41, Issue 5, 0514001 (2021)
Xiaoming Ma1, Heming Wei2、**, Shuzhen Fan3、*, Yongfu Li3、4, Zhaojun Liu1、4, Xian Zhao3、4, and Jiaxiong Fang3、4、5
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • 3Center for Optics Research and Engineering (CORE), Shandong University, Qingdao, Shandong 266237, China
  • 4Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, Shandong 266237, China;
  • 5Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/AOS202141.0514001 Cite this Article Set citation alerts
    Xiaoming Ma, Heming Wei, Shuzhen Fan, Yongfu Li, Zhaojun Liu, Xian Zhao, Jiaxiong Fang. Whispering-Gallery-Mode Polymer Oval-Shaped Microcavity with Unidirectional Emission[J]. Acta Optica Sinica, 2021, 41(5): 0514001 Copy Citation Text show less
    References

    [1] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [2] Peng B, Özdemir S K, Rotter S et al. Loss-induced suppression and revival of lasing[J]. Science, 346, 328-332(2014).

    [3] Lu Q J, Wu G Z, Chen D R et al. Optimal design and application of surface plasmon polaritions microdisk[J]. Acta Optica Sinica, 32, 0714002(2012).

    [4] Ma X M, Wei H M, Fan S Z et al. Multi-wavelength microresonator based on notched-elliptical polymer microdisks with unidirectional emission[J]. Optics Express, 28, 23928-23935(2020). http://www.researchgate.net/publication/343020828_Multi-wavelength_microresonator_based_on_notched-elliptical_polymer_microdisks_with_unidirectional_emission

    [5] Guo D, Zou C L, Ren H L et al. Measurement of heat dissipation rate based on optic-thermo oscillations in CaF2 optical micro-cavity[J]. Acta Optica Sinica, 39, 0512004(2019).

    [6] Mu Z, Liu C J, Wu X S et al. Feedback-coupled waveguide microring resonator based on slot structure[J]. Acta Optica Sinica, 39, 1213001(2019).

    [7] Zhang B, Wei W Q, Wang J H et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy[J]. Optics Express, 27, 19348-19358(2019).

    [8] Wang Q J, Yan C, Yu N et al. Whispering-gallery mode resonators for highly unidirectional laser action[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 22407-22412(2010).

    [9] Wang Z W, Dong G N, Yuan S X et al. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator[J]. Optics Letters, 44, 4670-4673(2019). http://www.ncbi.nlm.nih.gov/pubmed/31568413

    [10] Ma X M, Fan S Z, Wei H M et al. Miniature resonator sensor based on a hybrid plasmonic nanoring[J]. Optics Express, 27, 33051-33060(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878379

    [11] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 7, 168-240(2015).

    [12] Cao H, Wiersig J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics[J]. Reviews of Modern Physics, 87, 61-111(2015). http://adsabs.harvard.edu/abs/2015RvMP...87...61C

    [13] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities[J]. Advanced Optical Materials, 3, 1136-1162(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500232

    [14] Nöckel J U, Douglas Stone A. Ray and wave chaos in asymmetric resonant optical cavities[J]. Nature, 385, 45-47(1997). http://link.springer.com/article/10.1038/385045a0

    [15] Jiang X F, Zou C L, Wang L et al. Whispering-gallery microcavities with unidirectional laser emission[J]. Laser & Photonics Reviews, 10, 40-61(2016). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500163/abstract

    [16] Yang Y D, Zhang Y, Huang Y Z et al. Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects[J]. Optics Express, 22, 824-838(2014).

    [17] Zhan X P, Ku J F, Xu Y X et al. Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers[J]. IEEE Photonics Technology Letters, 27, 311-314(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=bcd917046875a19bc308e1403f00c141

    [18] Lee S Y, Kurdoglyan M S, Rim S et al. Resonance patterns in a stadium-shaped microcavity[J]. Physical Review A, 70, 023809(2004). http://www.oalib.com/paper/3528762

    [19] Shu F J, Zou C L, Sun F W et al. Mechanism of directional emission from a peanut-shaped microcavity[J]. Physical Review A, 83, 053835(2011). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.83.053835

    [20] Yan C L, Xu L, Feng Y et al. Micro-cavity lasers with directional emission and comparison of their characteristics[J]. Laser Physics, 24, 045811(2014).

    [21] Song Q H, Ge L, Stone A D et al. Directional laser emission from a wavelength-scale chaotic microcavity[J]. Physical Review Letters, 105, 103902(2010). http://www.ncbi.nlm.nih.gov/pubmed/20867521

    [22] Zou C L, Sun F W, Dong C H et al. High-Q and unidirectional emission whispering gallery modes: principles and design[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1-6(2013). http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220130600296285

    [23] Jiang X F, Xiao Y F, Zou C L et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities[J]. Advanced Materials, 24, 260-264(2012). http://www.ncbi.nlm.nih.gov/pubmed/22887055/

    [24] Liu Z P, Jiang X F, Li Y et al. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization[J]. Applied Physics Letters, 102, 221108(2013). http://scitation.aip.org/content/aip/journal/apl/102/22/10.1063/1.4809724

    [25] Xiao G L, Dou W Y, Yang H Y et al. Band-stop filter based on metal-insulator-metal waveguide with asymmetric circular resonant cavities[J]. Acta Optica Sinica, 39, 0513001(2019).

    [26] Schermer M, Bittner S, Singh G et al. Unidirectional light emission from low-index polymer microlasers[J]. Applied Physics Letters, 106, 101107(2015). http://scitation.aip.org/content/aip/journal/apl/106/10/10.1063/1.4914498

    [27] Ma X M, Fan S Z, Wei H M et al. Notched-elliptical polymer microdisk resonator for unidirectional emission at visible and near-infrared wavelengths[J]. Applied Physics Express, 13, 052002(2020). http://iopscience.iop.org/article/10.35848/1882-0786/ab82ab

    [28] Luneburg R K[M]. Mathematical theory of optics(1964).

    [29] Dottermusch S, Busko D, Langenhorst M et al. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers[J]. Optics Letters, 44, 29-32(2019). http://www.researchgate.net/publication/329716073_Exposure-dependent_refractive_index_of_Nanoscribe_IP-Dip_photoresist_layers

    [30] Yang X. Raman modulation of whispering gallery mode microresonators and its application[D]. Beijing: Tsinghua University, 9-14(2016).

    [31] Ku J F, Chen Q D, Zhang R et al. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing[J]. Optics Letters, 36, 2871-2873(2011).

    [32] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Proceedings of SPIE, 2799, 389-391(1996).

    [33] Ta V D, Yang S C, Wang Y et al. Multicolor lasing prints[J]. Applied Physics Letters, 107, 221103(2015).

    Xiaoming Ma, Heming Wei, Shuzhen Fan, Yongfu Li, Zhaojun Liu, Xian Zhao, Jiaxiong Fang. Whispering-Gallery-Mode Polymer Oval-Shaped Microcavity with Unidirectional Emission[J]. Acta Optica Sinica, 2021, 41(5): 0514001
    Download Citation