• Chinese Optics Letters
  • Vol. 22, Issue 7, 072602 (2024)
Liu Yang1,2, Hongqi Niu1,2, Shuxiao Wu1,2, Jianyong Hu1,2,*..., Mingyong Jing1,2, Zhixing Qiao3, Changgang Yang1,2, Guofeng Zhang1,2, Chengbing Qin1,2, Ruiyun Chen1,2, Liantuan Xiao1,2,** and Suotang Jia1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
  • show less
    DOI: 10.3788/COL202422.072602 Cite this Article Set citation alerts
    Liu Yang, Hongqi Niu, Shuxiao Wu, Jianyong Hu, Mingyong Jing, Zhixing Qiao, Changgang Yang, Guofeng Zhang, Chengbing Qin, Ruiyun Chen, Liantuan Xiao, Suotang Jia, "Single-photon frequency-modulated continuous-wave Lidar based on quantum compressed sensing," Chin. Opt. Lett. 22, 072602 (2024) Copy Citation Text show less
    References

    [1] E. W. Mitchell, M. S. Hoehler, F. R. Giorgetta et al. Coherent laser ranging for precision imaging through flames. Optica, 5, 988(2018).

    [2] P. Feneyrou, L. Leviandier, J. Minet et al. Frequency-modulated multifunction lidar for anemometry, range finding, and velocimetry-1. Theory and signal processing. Appl. Opt., 56, 9663(2017).

    [3] S. Kakuma. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity. Opt. Rev., 24, 39(2017).

    [4] C. P. Hsu, B. Li, B. Solano-Rivas et al. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 1(2021).

    [5] C. V. Poulton, A. Yaacobi, D. B. Cole et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091(2017).

    [6] Y. S. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14(2020).

    [7] S. Chan, A. Halimi, F. Zhu et al. Long-range depth imaging using a single-photon detector array and non-local data fusion. Sci. Rep., 9, 8075(2019).

    [8] R. Horaud, M. Hansard, G. Evangelidis et al. An overview of depth cameras and range scanners based on time-of-flight technologies. Mach. Vis. Appl., 27, 1005(2016).

    [9] D. J. Lum, S. H. Knarr, J. C. Howell. Frequency-modulated continuous-wave LiDAR compressive depth-mapping. Opt. Express, 26, 15420(2018).

    [10] R. K. Ula, Y. Noguchi, K. Iiyama. Three-dimensional object profiling using highly accurate FMCW optical ranging system. J. Lightwave Technol., 37, 3826(2019).

    [11] Z. P. Li, J. T. Ye, X. Huang et al. Single-photon imaging over 200 km. Optica, 8, 344(2021).

    [12] G. Z. Li, R. Wang, Z. Q. Song et al. Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging. Appl. Opt., 56, 3257(2017).

    [13] G. Z. Li, Z. H. Zhang, Y. F. Zhang et al. Estimation and correction of vibration-induced range cell migration for FMCW synthetic aperture ladar. Appl. Opt., 59, 2874(2020).

    [14] A. B. Mateo, Z. W. Barber. Multi-dimensional, non-contact metrology using trilateration and high resolution FMCW ladar. Appl. Opt., 54, 5911(2015).

    [15] D. Huyan, N. Lagrosas, T. Shiina. Target imaging in scattering media using ghost imaging optical coherence tomography. APL Photonics, 7, 086104(2022).

    [16] R. W. Lee, A. Laux, L. J. Mullen. Hybrid technique for enhanced optical ranging in turbid water environments. Opt. Eng., 53, 051404(2014).

    [17] J. Heidemann, M. Stojanovic, M. Zorzi. Underwater sensor networks: applications, advances and challenges. Philos. Trans. R. Soc. London, Ser. A, 370, 158(2012).

    [18] Z. W. Barber, J. R. Dahl, T. L. Sharpe et al. Shot noise statistics and information theory of sensitivity limits in frequency-modulated continuous-wave ladar. J. Opt. Soc. Am. A, 30, 1335(2013).

    [19] L. A. Jiang, J. X. Luu. Heterodyne detection with a week local oscillator. Appl. Opt., 47, 1486(2008).

    [20] H. Nyquist. Certain topics in telegraph transmission theory (Reprinted from Transactions of the A. I. E. E., February, pg. 617-644, 1928). Proc. IEEE, 90, 280(2002).

    [21] J. X. Luu, L. A. Jiang. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays. Appl. Opt., 45, 3798(2006).

    [22] B. I. Erkmen, Z. W. Barber, J. Dahl. Maximum-likelihood estimation for frequency-modulated continuous-wave laser ranging using photon-counting detectors. Appl. Opt., 52, 2008(2013).

    [23] L. Z. Xue, H. Zou. Sure independence screening and compressed random sensing. Biometrika, 98, 371(2011).

    [24] E. J. Candes, M. B. Wakin. An introduction to compressive sampling. IEEE Signal Process. Mag., 25, 21(2008).

    [25] G. A. Howland, D. J. Lum, M. R. Ware et al. Photon counting compressive depth mapping. Opt. Express, 21, 23822(2013).

    [26] S. Liu, Y. Chen. Sub-Nyquist radar receiver based on photonics-assisted compressed sensing and cascaded dictionaries. Chin. Opt. Lett., 22, 013902(2024).

    [27] Z. Chen, B. Liu, G. M. Guo et al. Photon counting heterodyne with a single photon avalanche diode. IEEE Photon. Technol. Lett., 33, 931(2021).

    [28] J. Y. Hu, M. Y. Jing, G. F. Zhang et al. Performance of single-photons communication using the multi-channel frequency coding scheme. Opt. Express, 26, 20835(2018).

    [29] J. Y. Hu, Y. Liu, L. L. Liu et al. Quantum description and measurement for single photon modulation. Photonics Res., 3, 24(2015).

    [30] J. Y. Hu, B. Yu, M. Y. Jing et al. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 5, e16144(2016).

    [31] H. T. Zhou, C. B. Qin, S. P. Han et al. Visualizing quantum coherence based on single-molecule coherent modulation microscopy. Nano Lett., 21, 1477(2021).

    [32] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theor., 52, 1289(2006).

    [33] R. G. Baraniuk. Compressive sensing. IEEE Signal Process. Mag., 24, 118(2007).

    [34] M. F. Duarte, R. G. Baraniuk. Spectral compressive sensing. Appl. Comput. Harmon. Anal., 35, 111(2013).

    [35] X. Huang, Y. Hong, Z. P. Li et al. Frequency-modulated continuous-wave 3D imaging with high photon efficiency. Opt. Lett., 47, 3568(2022).

    [36] E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys., 69, 79(2001).

    [37] J. Y. Hu, L. Yang, S. X. Wu et al. Security proof of the two-way quantum secure direct communication with channel loss and noise. Europhys. Lett., 129, 10004(2020).

    Liu Yang, Hongqi Niu, Shuxiao Wu, Jianyong Hu, Mingyong Jing, Zhixing Qiao, Changgang Yang, Guofeng Zhang, Chengbing Qin, Ruiyun Chen, Liantuan Xiao, Suotang Jia, "Single-photon frequency-modulated continuous-wave Lidar based on quantum compressed sensing," Chin. Opt. Lett. 22, 072602 (2024)
    Download Citation