• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20220055 (2022)
Yan Qu1、2, Chaoyu Ning1、3、4, Shuzhen Zou1、4, Haijuan Yu1、4, Xuechun Chen1、3、4, Shuang Xu1、3、4, Jiexi Zuo1、3、4, Shifei Han1、3、4, Xinyao Li1、3、4, and Xuechun Lin1、4
Author Affiliations
  • 1Laboratory of All-Solid-State Light Sources, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Beijing Advanced Materials and New Energy Technology Development Center, Beijing 100094, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101407, China
  • 4Beijing Engineering Technology Research Center of All-Solid-State Lasers Advanced Manufacturing, Beijing 100083, China
  • show less
    DOI: 10.3788/IRLA20220055 Cite this Article
    Yan Qu, Chaoyu Ning, Shuzhen Zou, Haijuan Yu, Xuechun Chen, Shuang Xu, Jiexi Zuo, Shifei Han, Xinyao Li, Xuechun Lin. Recent advances in nanosecond-pulsed Ytterbium-doped all-fiber lasers[J]. Infrared and Laser Engineering, 2022, 51(6): 20220055 Copy Citation Text show less
    Structure diagram of 1120 nm Q-switched fiber laser[22]
    Fig. 1. Structure diagram of 1120 nm Q-switched fiber laser[22]
    Active Q-switched ring cavity fiber laser. (a) Schematic diagram of structure; (b) Change of pulse width and pulse energy at different repetition frequencies; (c) Spectra, illustrated in logarithmic coordinates[24]
    Fig. 2. Active Q-switched ring cavity fiber laser. (a) Schematic diagram of structure; (b) Change of pulse width and pulse energy at different repetition frequencies; (c) Spectra, illustrated in logarithmic coordinates[24]
    Nanosecond pulse obtained by EOIM modulated continuous wave[27]
    Fig. 3. Nanosecond pulse obtained by EOIM modulated continuous wave[27]
    Passive Q-switched laser with Ytterbium-doped fiber as saturable absorber[34]
    Fig. 4. Passive Q-switched laser with Ytterbium-doped fiber as saturable absorber[34]
    Fiber laser with SMS structure[36]
    Fig. 5. Fiber laser with SMS structure[36]
    Structure diagram of passive Q-switched fiber laser with double cavity compound structure[38]
    Fig. 6. Structure diagram of passive Q-switched fiber laser with double cavity compound structure[38]
    Schematic diagram of gain-switched nanosecond pulse fiber laser[40]
    Fig. 7. Schematic diagram of gain-switched nanosecond pulse fiber laser[40]
    Low repetition rate nanosecond pulse amplifier and its synchronous pulse pumping technology. (a) Schematic diagram of all-fiber MOPA structure; (b) Time series of pump pulses at different amplification stages
    Fig. 8. Low repetition rate nanosecond pulse amplifier and its synchronous pulse pumping technology. (a) Schematic diagram of all-fiber MOPA structure; (b) Time series of pump pulses at different amplification stages
    Nearly kilowatt average power laser amplifier. (a) Schematic of structure; (b) Curve of average power vs. pump power; (c) Spectral pattern[54]
    Fig. 9. Nearly kilowatt average power laser amplifier. (a) Schematic of structure; (b) Curve of average power vs. pump power; (c) Spectral pattern[54]
    All-fiber linearly polarized MOPA laser system. (a) Structural diagram; (b) 6 spots randomly collected during the maximum power output, indicating that TMI appears [27]
    Fig. 10. All-fiber linearly polarized MOPA laser system. (a) Structural diagram; (b) 6 spots randomly collected during the maximum power output, indicating that TMI appears [27]
    All-fiber sub-nanosecond laser amplifier and its output characteristics. (a) Schematic of structure; (b) Changes of beam quality at 976 nm pumping wavelength; (c) Changes of beam quality at 915 nm pumping wavelength. The improvement of beam quality shows that TMI is suppressed[56]
    Fig. 11. All-fiber sub-nanosecond laser amplifier and its output characteristics. (a) Schematic of structure; (b) Changes of beam quality at 976 nm pumping wavelength; (c) Changes of beam quality at 915 nm pumping wavelength. The improvement of beam quality shows that TMI is suppressed[56]
    Output characteristics of fiber amplifier. (a) Amplifier construction with an average power of 300 W; (b) Curve of average power vs. pump power; (c) Display of laser cleaning[61]
    Fig. 12. Output characteristics of fiber amplifier. (a) Amplifier construction with an average power of 300 W; (b) Curve of average power vs. pump power; (c) Display of laser cleaning[61]
    1000 W all-fiber laser system [63]
    Fig. 13. 1000 W all-fiber laser system [63]
    MeasureYear[Ref.]Average powerPulse durationRepetition ratePulse energyPeak power
    Active Q-switching2013[22]111.0 mW140 ns1 kHz111.0 μJ0.8 kW
    291.0 mW181 ns10 kHz29.1 μJ0.2 kW
    2014[23]11.3 mW40 ns100 kHz113.0 nJ2.8 W
    2019[24]1.3 W9 ns175 kHz7.4 μJ0.8 kW
    Passive Q-switching2010[42]9.9 mW430 ns9 kHz1.1 μJ2.6 W
    2011[28]12.0 mW70 ns257 kHz46.0 nJ0.7 W
    2013[38]1.8 W45 ns30 kHz62.0 μJ1.4 kW
    2014[35]14.0 W140 ns100 kHz141.0 μJ1.0 kW
    2015[36]9.2 W100 ns100 kHz92.0 μJ0.9 kW
    2015[39]6.0 W143 ns12 kHz484.0 μJ3.4 kW
    21.0 W49 ns114 kHz187.0 μJ3.8 kW
    Gain-switching2019[40]30.0 W38 ns1 MHz30.0 μJ0.8 kW
    Table 1. Research progress of all-fiber nanosecond laser oscillator
    Year[Ref.]Active fiberAverage powerPulse durationRepetition ratePulse energyPeak power
    2010[76]Dcore=20 μm 21.07 W100 ns200 kHz0.1 mJ1 kW
    2012[77]Dcore=30 μm 300.8 W8 ns10 MHz30 μJ3.75 kW
    2012[53]Dcore=30 μm 505 W6 ns10 MHz50.5 μJ7.9 kW
    2013[50]Dcore=200 μm 0.62 W12 ns20 Hz31 mJ2.58 MW
    2013[78]Dcore=30 μm 102 W14.9 ns100 kHz1.02 mJ68 kW
    2013[57]Dcore=50 μm 265 W500 ns25 kHz10.6 mJ21.2 kW
    2014[79]Dcore=30 μm 25.3 W0.223 ns100 MHz0.253 μJ1.13 kW
    2014[54]Dcore=30 μm 913 W3 ns10 MHz91.3 μJ28.6 kW
    2014[58]Dcore=300 μm 400 W12 ns10 kHz40 mJ3.5 MW
    2014[49]Dcore=50 μm 23 W3 ns10 kHz2.3 mJ697 kW
    2014[52]Dcore=30 μm 120 W0.62 ns26.3 MHz4.56 μJ7.35 kW
    2015[55]293 W3.5 ns20 MHz14.65 μJ3.9 kW
    2015[56]Dcore=30 μm 608 W0.81 ns10 MHz60.8 μJ128 kW
    2016[60]Dcore=20 μm 188 W101 ns40 kHz4.5 mJ46.5 kW
    2017[59]1500 W90 ns10 kHz150 mJ1.7 MW
    1150 W30 ns10 kHz115 mJ3.5 MW
    2018[61]Dcore=30 μm 302 W203 ns100 kHz3 mJ15 kW
    2018[80]Dcore=25 μm 189 W250 ns200 kHz0.95 mJ3.8 kW
    2018[27]Dcore=30 μm 466 W4 ns10 MHz46.6 μJ8.8 kW
    2019[62]Dcore=100 μm 526 W150 ns30 kHz17.5 mJ116 kW
    761 W280 ns60 kHz12.6 mJ45 kW
    2021[63]Dcore=100 μm 1000 W260 ns60 kHz16.7 mJ64 kW
    Table 2. Research progress of all-fiber nanosecond pulse laser amplifier
    Yan Qu, Chaoyu Ning, Shuzhen Zou, Haijuan Yu, Xuechun Chen, Shuang Xu, Jiexi Zuo, Shifei Han, Xinyao Li, Xuechun Lin. Recent advances in nanosecond-pulsed Ytterbium-doped all-fiber lasers[J]. Infrared and Laser Engineering, 2022, 51(6): 20220055
    Download Citation