• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11405 (2018)
Miao Qiuyu1, Liu Miaoran1, Zhao Kai2, Ma Guangyi1、*, and Wu Dongjiang1
Author Affiliations
  • 1Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • 2Shanghai Aerospace Equipments Manufacturer, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP55.011405 Cite this Article Set citation alerts
    Miao Qiuyu, Liu Miaoran, Zhao Kai, Ma Guangyi, Wu Dongjiang. Research Progress on Technologies of Additive Manufacturing of Aluminum Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11405 Copy Citation Text show less
    References

    [1] Yang Q, Lu Z L, Huang F X et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 507, 26-31(2016).

    [2] Wang H M. Matreials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 35, 2690-2698(2014).

    [3] Li D C, He J K, Tian X Y et al. Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 49, 129-135(2013).

    [4] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components[J]. Science China: Information Science, 45, 1111-1126(2015).

    [5] Bremen S, Meiners W, Diatlov A. Selective laser melting[J]. Laser Technik Journal, 9, 33-38(2012).

    [6] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties[J]. Progress in Materials Science, 74, 401-477(2015). http://www.sciencedirect.com/science/article/pii/S0079642515000389

    [7] Buchbinder D, Schleifenbaum H, Heidrich S et al. High power selective laser melting (HP SLM) of aluminum parts[J]. Physics Procedia, 12, 271-278(2011). http://www.sciencedirect.com/science/article/pii/S1875389211001143

    [8] Kaufmann N, Imran M, Wischeropp T M et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting(SLM)[J]. Physics Procedia, 83, 918-926(2016). http://adsabs.harvard.edu/abs/2016PhPro..83..918K

    [9] Zhang X L, Qi H, Wei Q S. Experimental study of selective laser melted AlSi12[J]. Applied Laser, 33, 391-397(2013).

    [10] Yuan X B, Wei Q S, Wen S F et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 43, 91-94(2014).

    [11] Weingarten C, Buchbinder D, Pirch N et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 221, 112-120(2015). http://www.sciencedirect.com/science/article/pii/S0924013615000564

    [12] Shi Y J, Rometsch P, Yang K et al. Characterisation of a novel Sc and Zr modified Al-Mg alloy fabricated by selective laser melting[J]. Materials Letters, 196, 347-350(2017). http://www.sciencedirect.com/science/article/pii/S0167577X17304330

    [13] Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 213, 1387-1405(2013). http://www.sciencedirect.com/science/article/pii/S092401361300099X

    [14] Spierings A B, Dawson K, Voegtlin M et al. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting[J]. CIRP Annals, 65, 213-216(2016). http://www.sciencedirect.com/science/article/pii/S0007850616300579

    [15] Li X P, Ji G, Chen Z et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 129, 183-193(2017). http://www.sciencedirect.com/science/article/pii/S1359645417301635

    [16] Qian D Y, Chen C J, Zhang M et al. Study on microstructure and micro-mechanical properties of porous aluminium alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 0403002(2016).

    [17] Thijs L, Kempen K, Kruth J P et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 61, 1809-1819(2013). http://www.sciencedirect.com/science/article/pii/S1359645412008592

    [18] Fiocchi J, Tuissi A, Bassani P et al. Low temperature annealing dedicated to AlSi10Mg selective laser melting products[J]. Journal of Alloys and Compounds, 695, 3402-3409(2017). http://www.researchgate.net/publication/311353464_Low_temperature_annealing_dedicated_to_AlSi10Mg_selective_laser_melting_products

    [19] Brandl E, Heckenberger U, Holzinger V et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials and Design, 34, 159-169(2012). http://www.sciencedirect.com/science/article/pii/S0261306911005590

    [20] Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 94, 192-201(2017). http://www.sciencedirect.com/science/article/pii/S0142112316301463

    [21] Prashanth K G, Scudino S, Klauss H J et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment[J]. Materials Science & Engineering, 590, 153-160(2014). http://www.sciencedirect.com/science/article/pii/S0921509313011180

    [22] Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting[J]. Acta Materialia, 126, 25-35(2017). http://www.sciencedirect.com/science/article/pii/S135964541630982X

    [23] Zhang H, Nie X J, Zhu H H et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 0503007(2016).

    [24] Zhang B, Cao Y, Wang L et al. Anisotropy of body-centered-cubic porous structures by selective laser melting[J]. Chinese Journal of Lasers, 44, 0802005(2017).

    [25] Zhao X M, Qi Y H, Yu Q C et al. Study on microstructure and mechanical properties of AlSi10Mg alloy produced by 3D printing[J]. Foundry Technology, 37, 2402-2404(2016).

    [26] Maskery I, Aboulkhair N T, Aremu A O et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science & Engineering, 670, 264-274(2016). http://www.sciencedirect.com/science/article/pii/S092150931630658X

    [27] Wang H, Kovacevic R. Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy[J]. Proceedings of the Institution of Mechanical Engineers, 215, 1519-1527(2001). http://www.researchgate.net/publication/245386028_Rapid_prototyping_based_on_variable_polarity_gas_tungsten_arc_welding_for_a_5356_aluminium_alloy

    [28] Wang H J, Jiang W H, Ouyang J H et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 148, 93-102(2004). http://www.sciencedirect.com/science/article/pii/S0924013604001116

    [29] Shen C, Pan Z X, Cuiuri D et al. In-depth study of the mechanical properties for Fe3 Al based iron aluminide fabricated using the wire-arc additive manufacturing process[J]. Materials Science and Engineering, 669, 118-126(2016). http://www.sciencedirect.com/science/article/pii/S0921509316305548

    [30] Ding D H. Pan Z X, van Duin S, et al. Fabricating superior NiAl bronze components through wire arc additive manufacturing[J]. Materials, 9, 652(2016).

    [31] Ding D H, Pan Z X, Cuiuri D et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer-Integrated Manufacturing, 31, 101-110(2015). http://www.sciencedirect.com/science/article/pii/S0736584514000696

    [32] Ding D H, Pan Z X, Cuiuri D et al. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation[J]. Journal of Cleaner Production, 133, 942-952(2016). http://www.sciencedirect.com/science/article/pii/S0959652616307119

    [33] Bai J Y, Wang J H, Lin S B et al. Width prediction of aluminum alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 36, 87-90(2015).

    [34] Bai J Y, Wang J H, Shi J H, mechanical properties of et al. -Al alloy thin-walled components produced by additive manufacturing with TIG welding[J]. Welding&Joining, 2015, 23-26(4043).

    [35] Geng H B, Li J L, Xiong J T et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 243, 40-47(2017). http://www.sciencedirect.com/science/article/pii/S0924013616304137

    [36] Huang D, Zhu Z H, Geng H B et al. TIG wire and arc additive manufacturing of 5A06 aluminium alloy[J]. Journal of Materials Engineering, 45, 66-72(2017).

    [37] Cong B Q, Ding J L. Influence of CMT process on porosity of wire arc additive manufactured Al-Cu alloy[J]. Rare Metal Materials and Engineering, 43, 3149-3153(2014).

    [38] Sun H Y, Cong B Q, Su Y et al[J]. Geometry, microstructure and properties of wire+arc additive manufacturing Al-6.3 Cu alloy deposits Aeronautical Manufacturing Technology, 2017, 72-76.

    [39] Cong B Q, Su Y, Qi B J et al[J]. Wire+arc additive manufacturing for aluminium alloy deposits Aeronautical Manufacturing Technology, 2016, 29-37.

    [40] Zhuang Z L, Song G, Zhu M L et al. Rapid prototyping aluminum alloy with vertical deposition by laser-arc hybrid heat source[J]. Transactions of the China Welding Institution, 34, 71-74(2013).

    Miao Qiuyu, Liu Miaoran, Zhao Kai, Ma Guangyi, Wu Dongjiang. Research Progress on Technologies of Additive Manufacturing of Aluminum Alloys[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11405
    Download Citation