• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 341 (2019)
Hong-Xia LIU1、2、3, Wen LI1, Xin-Yue ZHANG1, Juan LI1, Yan-Zhong PEI1, [in Chinese]1、2、3, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 11. Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • 22. State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 33. University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20180249 Cite this Article
    Hong-Xia LIU, Wen LI, Xin-Yue ZHANG, Juan LI, Yan-Zhong PEI, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x[J]. Journal of Inorganic Materials, 2019, 34(3): 341 Copy Citation Text show less
    References

    [1] H XI, G FRAISSE, L LUO. Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 11, 923-936(2007).

    [2] A SHNAWAH D, M HAMID ELSHEIKH, M F M SABRI et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337-355(2014).

    [3] B CADOFF I, E MILLER. Thermoelectric bmaterials and devices. New York: Reinhold Pub. Corp., 344p(1960).

    [4] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [5] M. TRITT T. Recent Trends in Thermoelectric Materials Research.(2001).

    [6] C WOOD. Materials for thermoelectric energy conversion. Reports on Progress in Physics, 51, 459-539(1988).

    [7] J SNYDER G, S TOBERER E. Complex thermoelectric materials. Nature Materials, 7, 105-114(2008).

    [8] M BHANDARI C, D M ROWE. Thermoelectric Transport Theory, 27-42(1995).

    [9] Y PEI, A LALONDE, X SHI et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [10] S LIN, Z CHEN, W LI et al. Tellurium as a high-performance elemental thermoelectric. Nature Communications, 7, 10287(2016).

    [11] W LI, Z JIAN, Z CHEN et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 29, 1606768(2017).

    [12] W LI, S LIN, Y WU et al. Advances in environment-friendly SnTe thermoelectrics. ACS Energy Letters, 2, 2349-2355(2017).

    [13] W LI, L ZHENG L, H GE B et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 29, 1605887-1-8(2017).

    [14] X ZHANG, Z CHEN, J LI et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2, 976-987(2018).

    [15] J LI, Z CHEN, X ZHANG et al. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Advanced Science, 4, 1700341-1-9(2017).

    [16] L YANG, G CHEN Z, M HONG et al. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Advanced Materials, 30, 1705942-1-8(2018).

    [17] X ZHU H, J HONG A, L LI et al. Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. Journal of Materials Chemistry A, 3, 13365-13370(2015).

    [18] K YIN, X TAN, W LIU et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett., 108, 166601(2012).

    [19] G FU C, T LIU Y, Q BAI S et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 6, 8144-1-7(2015).

    [20] Y PEI, Z CHEN, X ZHANG. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2(1), 1705617-1-12(2018).

    [21] G KANATZIDIS M. Nanostructured thermoelectrics: the new paradigm?. Chemistry of Materials, 22, 648-659(2010).

    [22] J LENSCH-FALK, S TOBERER E, Z PEI Y et al. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 21, 241-249(2011).

    [23] L DU B, H LI, J XU J et al. High ZT in nanostructuring AgSbTe2. Journal of Materials Chemistry, 20, 6138-6143(2010).

    [24] D UNAL, M LOOR, J SCHAUMANN et al. Improving the zT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids. Dalton Trans, 46, 656-668(2017).

    [25] P PICHANUSAKORN, P BANDARU. Nanostructured thermoelectrics. Materials Science and Engineering: R: Reports, 67, 19-63(2010).

    [26] T ZOU, Y ZHANG, X QIN et al. Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 5, 17803-1-9(2015).

    [27] B POUDEL, Y MA, Q HAO et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320, 634-638(2008).

    [28] G CHEN Z, L YANG, M HONG et al. BixSb2-xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 20, 144-155(2016).

    [29] M HONG, G CHEN Z, C CHASAPIS T et al. n-type Bi2Te3-xSexnanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 10, 4719-4727(2016).

    [30] S LIN, X ZHANG, W LI et al. Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 28, 6227-6232(2016).

    [31] X LIU, L HU, T ZHU et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 24, 5211-5218(2014).

    [32] L ZHENG, Y PEI, W LI et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2, 1600019(2016).

    [33] W CHEN Z, Y ZHANG X, W SHEN J et al. Substitutional defects enhancing thermoelectric CuGaTe2. Journal of Materials Chemistry A, 5, 5314-5320(2017).

    [34] V NOVOSAD О, V PARASYUK O, V BOZHKO V et al. Influence of cation-vacancy defects on the properties of CuInSe2-ZnIn2Se4 solid solutions. Journal of Alloys and Compounds, 618, 712-717(2015).

    [35] I KIM S, H LEE K, A MUN H et al. Thermoelectrics dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 348, 109-114(2015).

    [36] B GE, Z CHEN, W LI et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun., 8, 13828-1-8(2017).

    [37] F XU, H LIU, X SHI et al. Copper ion liquid-like thermoelectrics. Nat. Mater., 11, 422-425(2012).

    [38] W QIU, L XI, P WEI et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. PNAS, 111, 15031-15035(2014).

    [39] B GE, S LIN, W LI et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 3, 1600196-1-7(2016).

    [40] X ZHANG, Z CHEN, S LIN et al. Promising thermoelectric Ag5-δTe3 with intrinsic low lattice thermal conductivity. ACS Energy Letters, 2, 2470-2477(2017).

    [41] MANUEL WEISS, WEN LI, SIQI LIN et al. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Advanced Energy Materials, 8, 1800030-1-8(2018).

    [42] V JOVOVIC, J P HEREMANS, T MORELLI D. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 101, 035901-1-4(2008).

    [43] S NEGI D, N GUIN S, R DATTA et al. Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSe. Journal of Materials Chemistry A, 2, 4324-4331(2014).

    [44] L LI, J HONG A, J GONG J et al. Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron-phonon coupling and strong bonding anharmonicity. J. Mater. Chem. C, 4, 3281-3289(2016).

    [45] S LI, S LIN, W LI et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule, 1, 816-830(2017).

    [46] D NIELSEN M, V OZOLINS, P HEREMANS J. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci., 6, 570-578(2013).

    [47] J MA, O DELAIRE, F MAY A et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nano, 8, 445-451(2013).

    [48] D LI, H ZOU T, Y QIN X et al. High thermoelectric properties for Sn-doped AgSbSe2. Journal of Alloys and Compounds, 635, 87-91(2015).

    [49] A CHATTERJEE, S NEGI D, N GUIN S et al. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 6, 2603-2608(2013).

    [50] N GUIN S, A CHATTERJEE, K BISWAS. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 4, 11811-11815(2014).

    [51] S CAI, Z LIU, J SUN et al. Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Trans, 44, 1046-1051(2015).

    [52] D BERARDAN, L PAN, N DRAGOE. High thermoelectric properties of n-type AgBiSe2.. Am. Chem. Soc., 135, 4914-4917(2013).

    [53] M ZOU, Q LIU, CF WU et al. Comparing the role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2. RSC Advances, 8, 7055-7061(2018).

    [54] X QIN, J ZHANG, C XIAO et al. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide.. Am. Chem. Soc., 134, 18460-18466(2012).

    [55] Z WANG, J HUANG, W GAO et al. Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity. ACS Appl. Mater. Interfaces, 10, 18685-18692(2018).

    [56] L YANG, ZG CHEN, M HONG et al. Achieving ZT>2 in p-type AgSbTe2-xSexalloys via exploring the extra light valence band and introducing dense stacking faults. Advanced Energy Materials, 8, 1702333-1-7(2018).

    [57] H MOTOHISA, H TADAMASA, K KAZUHIRO. Phase diagrams of the pseudo-binary Cu2Se-Bi2Se3 and Ag2Se-Bi2Se3 systems and thermoelectric properties of Cu2Se-Bi2Se3 solid solution. Advanced Energy Conversion, 6, 195-200(1966).

    [58] H WERNICK J, S GELLER, E BENSON K. Constitution of the AgSbSe2-AgSbTe2-AgBiSe2-AgBiTe2 system. Journal of Physics & Chemistry of Solids, 7, 240-248(1958).

    [59] C MANOLIKAS, J SPYRIDELIS. Electron microscopic study of polymorphismand defects in AgBiSe2 and AgBiS2. Mat. Res. Bull., 12, 907-913(1977).

    [60] H WERNICK J, S GELLER. Ternary semiconducting compounds with sodium chloride-like structure-AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Inorganic Chemistry, 20, 2246-2250(2001).

    [61] D MAHANTI S, K HOANG. Atomic and electronic structures of I-V-VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 1, 51-56(2016).

    [62] J WU H, Y CHENG H, C WEI P et al. Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Materialia, 141, 217-229(2017).

    [63] C LIU X, D JIN, 109, 133901-1-5(2016).

    [64] H NISHIATE, A NISHIDA, Y GOTO et al. Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material. Dalton Trans., 47, 2575-2580(2018).

    [65] V SRIHARI, N GUIN S, K BISWAS. Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. Journal of Materials Chemistry A, 3, 648-655(2015).

    [66] M. ROWE D, M BHANDARI C. Optimization of Carrier Concentration, 43-53(1995).

    [67] Z PEI Y, A GLOSKOVSKII, M GIBBS Z et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Advanced Energy Materials, 4, 1400486-1-12(2014).

    [68] Y ZHANG X, Y Z PEI. Manipulation of charge transport in thermoelectrics. npj Quantum Materials, 2, 68-1-5(2017).

    [69] S LIN, Z CHEN, W LI et al. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 1, 307-315(2015).

    [70] M GIBBS Z, G J SNYDER, A LALONDE. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics, 15, 075020-1-18(2013).

    [71] D J SINGH, S PARKER D, F MAY A. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 3(6), 064003-1-11(2015).

    [72] P CULVER S, J PEILSTOCKER, F BOCHER et al. Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics. Dalton Trans, 46, 3906-3914(2017).

    [73] M ROUFOSSE, G KLEMENS P. Thermal conductivity of complex dielectric crystals. Physical Review B, 7, 5379-5386(1973).

    [74] N BELOMESTNYKH V, S SANDITOV D. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Technical Physics, 56, 1619-1623(2011).

    [75] A RAJPUT, A BHARDWAJ, K SHUKLA A et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 3, 8504-8516(2013).

    Hong-Xia LIU, Wen LI, Xin-Yue ZHANG, Juan LI, Yan-Zhong PEI, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x[J]. Journal of Inorganic Materials, 2019, 34(3): 341
    Download Citation