• Infrared and Laser Engineering
  • Vol. 48, Issue 7, 702001 (2019)
Chengmingyue Li
Author Affiliations
  • Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA)
  • show less
    DOI: 10.3788/irla201948.0702001 Cite this Article
    Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. Infrared and Laser Engineering, 2019, 48(7): 702001 Copy Citation Text show less
    References

    [1] Fisher R. Optical Phase Conjugation[M]. San Diego: Academic Press, 1983.

    [2] He G S. Optical phase conjugation: principles, techniques, and applications[J]. Progress in Quantum Electronics, 2002, 26: 131-191.

    [3] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56: 523-523.

    [4] Goodman J W, Huntley W H, Jackson D W, et al. Wavefront-reconstruction imaging through random media[J]. Appl Phys Lett, 1966, 8: 311-313.

    [5] Pepper D M, Fekete D, Yariv A. Observation of amplified phase-conjugate reflection and optical parametric oscillation by degenerate 4-wave mixing in a transparent medium[J].Appl Phys Lett, 1978, 33: 41-44.

    [6] Auyeung J, Fekete D, Pepper D, et al. A theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors[J]. IEEE J Quantum Electron, 1979, 15: 1180-1188.

    [7] Levenson M D. High-resolution imaging by wave-front conjugation[J]. Opt Lett, 1980, 5: 182-184.

    [8] Sun X, Zhou Z, Li Y, et al. Holographic associative memory using a coherently induced double phase conjugate mirror[J]. Opt Eng, 1996, 35: 2153-2157.

    [9] Yariv A. Phase conjugate optics and real-time holography[J].IEEE J Quantum Electron, 1978, 14: 650-660.

    [10] Dunning G J, Lind R C. Demonstration of image transmission through fibers by optical phase conjugation[J]. Opt Lett, 1982, 7: 558-560.

    [11] Yariv A, Fekete D, Pepper D M. Compensation for channel dispersion by nonlinear optical phase conjugation[J]. Opt Lett, 1979, 4: 52-54.

    [12] Gower M C, Caro R G. KrF laser with a phase-conjugate Brillouin mirror[J]. Opt Lett, 1982, 7: 162-164.

    [13] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nat Photonics, 2011, 5: 154-157.

    [14] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J].Nat Photonics, 2015, 9: 563-571.

    [15] Wang Lihong, Wu H. Biomedical Optics: Principles and Imaging[M]. Hoboken: John Wiley & Sons, 2007.

    [16] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nat Photonics, 2008, 2: 110-115.

    [17] Yariv A, Pepper D M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing[J]. Opt Lett, 1977, 1: 16-18.

    [18] Wang V, Giuliano C R. Correction of phase aberrations via stimulated Brillouin scattering[J]. Opt Lett, 1978, 2: 4-6.

    [19] Tomov I V, Fedosejevs R, McKen D C C, et al. Phase conjugation and pulse compression of KrF-laser radiation by stimulated Raman scattering[J]. Opt Lett, 1983, 8: 9-11.

    [20] Kogelnik H. Holographic image projection through inhomogeneous media[J]. Bell Syst Tech J, 1965, 44: 2451-2455.

    [21] McDowell E J, Cui M, Vellekoop I M, et al. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. Journal of Biomedical Optics, 2010, 15(2): 025004.

    [22] Cui M, McDowell E J, Yang C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear[J]. Opt Express, 2010, 18: 25-30.

    [23] Lai P, Xu X, Liu H, et al. Time-reversed ultrasonically encoded optical focusing in biological tissue[J]. Journal of Biomedical Optics, 2012, 17(3): 036001.

    [24] Yang Q, Xu X, Lai P, et al. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution[J]. Journal of Biomedical Optics, 2013, 18(11): 110502.

    [25] Lai P, Suzuki Y, Xu X, et al. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media[J]. Laser Physics Letters, 2013, 10(7): 075604.

    [26] Liu Y, Lai P, Ma C, et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 2015, 6: 5904.

    [27] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33 000× optical power gain[J]. Scientific Reports, 2015, 5: 8896.

    [28] Suzuki Y, Xu X, Lai P, et al. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer[J]. Journal of Biomedical Optics, 2012, 17(8): 80507.

    [29] Pang G, Liu H, Hou P, et al. Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO3: Cu: Ce[J]. Appl Opt, 2018, 57: 2675-2678.

    [30] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Opt Express, 2010, 18: 3444-3455.

    [31] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Opt Express, 2014, 22: 14054-14071.

    [32] Hemphill A S, Shen Y, Hwang J, et al. High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials[J]. Journal of Biomedical Optics, 2018, 24(3): 031004.

    [33] Azimipour M, Atry F, Pashaie R. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials[J]. Appl Opt, 2016, 55: 2873-2880.

    [34] Hillman T R, Yamauchi T, Choi W, et al. Digital optical phase conjugation for delivering two-dimensional images through turbid media[J]. Scientific Reports, 2013, 3: 1909.

    [35] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8): 085001.

    [36] Liu Y, Shen Y, Ruan H, et al. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses[J]. Journal of Biomedical Optics, 2018, 23(1): 010501.

    [37] Jang M, Ruan H, Vellekoop I M, et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin[J]. Biomedical Optics Express, 2015, 6: 72-85.

    [38] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8): 728-735.

    [39] Wang Y M, Judkewitz B, DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3: 928.

    [40] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation[J]. Nat Photonics, 2012, 6: 657-661.

    [41] Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy[J]. Scientific Reports, 2012, 2: 748.

    [42] Ruan H, Jang M, Judkewitz B, et al. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode[J]. Scientific Reports, 2014, 4: 7156.

    [43] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nat Photonics, 2013, 7: 300-305.

    [44] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Opt Express, 2010, 18: 20723-20731.

    [45] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Appl Phys Lett, 2012, 101(8): 81108.

    [46] Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 2015, 6: 8968.

    [47] Ruan H, Haber T, Liu Y, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4: 1337-1343.

    [48] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nat Photonics, 2014, 8: 931-936.

    [49] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1: 227-232.

    [50] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 2017, 3: eaao5520.

    [51] Park J-H, Yu Z, Lee K, et al. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications[J]. APL Photonics, 2018, 3: 100901.

    [52] Shen Y, Liu Y, Ma C, et al. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media[J].Optica, 2017, 4: 97-102.

    [53] Hemphill A S, Shen Y, Liu Y, et al. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping[J]. Appl Phys Lett, 2017, 111: 221109.

    [54] Klein M B. Beam coupling in undoped GaAs at 1.06 μm using the photorefractive effect[J]. Opt Lett, 1984, 9: 350-352.

    [55] Liu Y, Ma C, Shen Y, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4: 280-288.

    [56] Hemphill A S, Tay J W, Wang L V. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media[J]. Journal of Biomedical Optics, 2016, 21(12): 121502.

    [57] Liu Y, Ma C, Shen Y, et al. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media[J]. Opt Lett, 2016, 41: 1321-1324.

    [58] Ma C, Zhou F, Liu Y, et al. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation[J]. Optica, 2015, 2: 869-876.

    Chengmingyue Li. Optical phase conjugation (OPC) for focusing light through/inside biological tissue[J]. Infrared and Laser Engineering, 2019, 48(7): 702001
    Download Citation