• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210436 (2021)
Jiajia Mao1, Ping Hu2, Xue Zhou1, Huahang Wang1, Hongkun Nie1, Bingzheng Yan1, Ruihua Wang1, Baitao Zhang1、2, Tao Li1、2, Kejian Yang1、2、3、*, and Jingliang He1、2、*
Author Affiliations
  • 1Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • 3Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
  • show less
    DOI: 10.3788/IRLA20210436 Cite this Article
    Jiajia Mao, Ping Hu, Xue Zhou, Huahang Wang, Hongkun Nie, Bingzheng Yan, Ruihua Wang, Baitao Zhang, Tao Li, Kejian Yang, Jingliang He. Research development on Tm3+/ Ho3+ ions doped mid-infrared ultrafast lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210436 Copy Citation Text show less
    References

    [1] Pelsmaeker J De, G Graulus, Vlierberghe S Van, et al. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization. Journal of Materials Processing Technology, 255, 808-815(2018).

    [2] K Mizutani, S Ishii, M Aoki, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser. Optics Letters, 43, 202-205(2018).

    [3] V A Antonov, K C Han, T R Akhmedzhanov, et al. Attosecond pulse amplification in a plasma-based X-Ray laser dressed by an infrared laser field. Physical Review Letters, 123, 243903(2019).

    [4] T Yoshida, M Taguchi, I Takaaki, et al. Thulium laser ablation facilitates retrograde intra-renal surgery for upper urinary tract urothelial carcinoma. International Journal of Urology, 25, 379-383(2018).

    [5] O L Antipov, I D Eranov, R I Kositsyn. 10-W mid-IR optical parametric oscillators based on ZnGeP2 elements pumped by a fibre-laser-pumped Ho: YAG Laser. Experimental and numerical study. Quantum Electronics (Woodbury, N. Y.), 47, 601-606(2017).

    [6] Z Zhang, X Guo, J Wang, et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+: CaF2 single crystal. Optics Letters, 43, 4300-4303(2018).

    [7] H Huang, H Hu, Z Lin, et al. Anisotropic thermal analyses of a high efficiency Tm: YAP slab laser and its intra-cavity pumping for Ho lasers. Optics Express, 28, 20930(2020).

    [8] J F Pinto, L Esterowitz. Continuous-wave mode-locked 2-μm Tm: YAG laser. Optics Letters, 17, 731(1992).

    [9] G Galzerano, M Marano, S Longhi, et al. Sub-100-ps amplitude-modulation mode-locked Tm-Ho: BaY2F8 laser at 2.06 μm. Optics Letters, 28, 2085-2087(2003).

    [10] P Hubner, C Kieleck, S D Jackson, et al. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser. Optics Letters, 36, 2483-2485(2011).

    [11] B Q Yao, Z Cui, J Wang, et al. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser. Laser Physics Letters, 12, 25002(2014).

    [12] Z Cui, X M Duan, B Q Yao, et al. Actively mode-locked Ho: LuAG laser at 2.1 μm. Applied Physics B, 121, 421-424(2015).

    [13] X Duan, P Zhang, Z Cui, et al. Actively mode-locked Ho: LuVO4 laser at 2073.8 nm. Optical Engineering, 55, 126104(2016).

    [14] X Duan, J Yuan, Z Cui, et al. Resonantly pumped actively mode-locked Ho: YAG ceramic laser at 2122.1 nm. Applied Optics, 55, 1953-1956(2016).

    [15] W Ma, T Wang, F Wang, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm. Opto-Electronic Engineering, 45, 170662(2018).

    [16] J Muzik, M J Jr, D Vyhlidal, et al. 2.6 W diode-pumped actively mode-locked Tm: YLF laser. Laser Physics Letters, 12, 035802(2015).

    [17] M Eckerle, C Kieleck, J Świderski, et al. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber. Optics Letters, 37, 512-514(2012).

    [18] X Wang, P Zhou, X Wang, et al. 2-μm Tm-Doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating. Photonics Journal, IEEE, 5, 1502206(2013).

    [19] K Yin, B Zhang, W Yang, et al. Flexible picosecond thulium-doped fiber laser using the active mode-locking technique. Optics Letters, 39, 4259-4262(2014).

    [20] C Kneis, B Donelan, A Berrou, et al. Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power. Optics Letters, 40, 1464-1467(2015).

    [21] X Wu, Z Wu, T Huang, et al. All-optical actively mode-locked fiber laser at 2-μm based on inter-band modulation. IEEE Photonics Journal, 9, 2756643(2017).

    [22] Dergachev A. Highenergy, kHzrate, picosecond, 2µm laser pump source f IR nonlinear optical devices[C]Proceedings of SPIE The International Society f Optical Engineering, 2013, 8599: 2001386.

    [23] B Q Yao, H Li, X L Li, et al. An actively mode-locked Ho: YAG solid-laser pumped by a Tm-doped fiber laser. Chinese Physics Letters, 33, 44-47(2016).

    [24] Y H Xiao, Y L Mu, L L Yang, et al. A ps level actively mode-locked Ho: Sc2SiO5 laser at 2112.1 nm resonantly-pumped by Tm fiber laser. Laser Physics, 28, 015801(2018).

    [25] Schepler K L, Smith B D, Heine F, et al. Passive Qswitching mode locking of 2um lasers[C]SPIE, 1993: 186189.

    [26] R C Sharp, D E Spock, N Pan, et al. 190-fs passively mode-locked thulium fiber laser with a low threshold. Optics Letters, 21, 881-883(1996).

    [27] J Paajaste, S Suomalainen, R Koskinen, et al. GaSb-based heterostructures for high power and pulsed laser operation. Lithuanian Journal of Physics, 50, 41-46(2010).

    [28] A A Lagatsky, F Fusari, S Calvez, et al. Passive mode locking of a Tm, Ho: KY(WO4)2 laser around 2 μm. Optics Letters, 34, 2587-2589(2009).

    [29] A A Lagatsky, X Han, M D Serrano, et al. Femtosecond (191 fs) NaY(WO4)2 Tm, Ho-codoped laser at 2060 nm. Optics Letters, 35, 3027-3029(2010).

    [30] J Paajaste, S Suomalainen, R Koskinen, et al. GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers. Physica Status Solidi, 9, 294-297(2012).

    [31] K Yang, D Heinecke, J Paajaste, et al. Mode-locking of 2 μm Tm, Ho: YAG laser with GaInAs and GaSb-based SESAMs. Optics Express, 21, 4311-4318(2013).

    [32] Y Zhao, L Wang, W Chen, et al. SESAM mode-locked Tm: LuYO3 ceramic laser generating 54-fs pulses at 2048 nm. Applied Optics, 59, 10493-10497(2020).

    [33] A Kim, S Hunsche, T Dekorsy, et al. Time-resolved study of intervalence band thermalization in a GaAs quantum well. Applied Physics Letters, 68, 2956-2958(1996).

    [34] Gegiev N, Semtsiv M, Deksy T, et al. Intersubb transitions in strain compensated InGaAsAlAs quantum well structures grown on InP[C]Institute of Physics Conference Series, 2003.

    [35] V B Tribuzy, S Ohser, S Winnerl, et al. Femtosecond pump-probe spectroscopy of intersubband relaxation dynamics in narrow InGaAs/AlAsSb quantum well structures. Applied Physics Letters, 89, 495(2006).

    [36] V B Tribuzy, S Ohser, M Priegnitz, et al. Inefficiency of intervalley transfer in narrow InGaAs/AlAsSb quantum wells. Physica Status Solidic, 5, 229-231(2010).

    [37] K Yang, H Bromberger, H Ruf, et al. Passively mode-locked Tm, Ho: YAG laser at 2 microm based on saturable absorption of intersubband transitions in quantum wells. Optics Express, 18, 6537-6544(2010).

    [38] N Coluccelli, A Lagatsky, Lieto A Di, et al. Passive mode locking of an in-band-pumped Ho: YLiF4 laser at 2.06 μm. Optics Letters, 36, 3209-3211(2011).

    [39] F Fusari, A A Lagatsky, G Jose, et al. Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers. Optics Express, 18, 22090-22098(2010).

    [40] A A Lagatsky, S Calvez, J A Gupta, et al. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm. Optics Express, 19, 9995-10000(2011).

    [41] A A Lagatsky, P Koopmann, P Fuhrberg, et al. Passively mode locked femtosecond Tm: Sc2O3 laser at 2.1 μm. Opt Lett, 37, 437-439(2012).

    [42] A A Lagatsky, O L Antipov, W Sibbett. Broadly tunable femtosecond Tm: Lu2O3 ceramic laser operating around 2070 nm. Optics Letters, 20, 19349-19354(2012).

    [43] K J Yang, H Bromberger, D Heinecke, et al. Efficient continuous wave and passively mode-locked Tm-doped crystalline silicate laser. Optics Express, 20, 18630-18635(2012).

    [44] Gluth A, Mateos X, Paajaste J, et al. Passively ModeLocked Tm: YAG Ceramic Laser at 2 µm[C]Advanced Solid State Lasers, 2013.

    [45] T Feng, K Yang, J Zhao, et al. 1.21 W passively mode-locked Tm: LuAG laser. Optics Express, 23, 11819(2015).

    [46] L C Kong, Z P Qin, G Q Xie, et al. Dual-wavelength synchronous operation of a mode-locked 2-µm Tm: CaYAlO4 laser. Optics Letters, 40, 356-358(2015).

    [47] A Gluth, Y Wang, V Petrov, et al. GaSb-based SESAM mode-locked Tm: YAG ceramic laser at 2 µm. Optics Express, 23, 1361(2015).

    [48] Y Wang, R Lan, X Mateos, et al. Thulium doped LuAG ceramics for passively mode locked lasers. Optics Express, 25, 7084(2017).

    [49] Y Wang, W Jing, P Loiko, et al. Sub-10 optical-cycle passively mode-locked Tm: (Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Optics Express, 26, 10299(2018).

    [50] A Tyazhev, R Soulard, T Godin, et al. Passively mode-locked diode-pumped Tm3+: YLF laser emitting at 1.91 µm using a GaAs-based SESAM. Laser Physics Letters, 15, 045807(2018).

    [51] Y Shen, X Han, L Li, et al. Continuous-wave mode-locked Tm: YAG laser with GaAs-based SESAM. Infrared Physics & Technology, 111, 103539(2020).

    [52] J Liu, C Zhang, Z Zhang, et al. 1886-nm mode-locked and wavelength tunable Tm-doped CaF2 lasers. Optics Letters, 44, 134-137(2019).

    [53] W Zhou, D Y Shen, Y S Wang, et al. Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy. Laser Physics Letters, 9, 587-590(2012).

    [54] M A Chernysheva, A A Krylov, P G Kryukov, et al. Nonlinear amplifying loop-mirror-based mode-locked Thulium-doped fiber laser. IEEE Photonics Technology Letters, 24, 1254-1256(2012).

    [55] H Li, J Liu, Z Cheng, et al. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers. Optics Express, 23, 6292(2015).

    [56] P Kuan, K Li, L Zhang, et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser. IEEE Photonics Technology Letters, 28, 1525-1528(2016).

    [57] H Cheng, W Lin, Z Luo, et al. Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [58] Y Wang, R Lan, X Mateos, et al. Broadly tunable mode-locked Ho: YAG ceramic laser around 2.1 µm. Optics Express, 24, 18003(2016).

    [59] Sokin E, Bugar I, Sokina I T, et al. Compact diodepumped dispersionmanaged SESAMmodelocked Ho: fiber laser[C]infrared Coherent Source, 2016.

    [60] A A Lagatsky, F Fusari, S Calvez, et al. Femtosecond pulse operation of a Tm, Ho-codoped crystalline laser near 2 μm. Optics Letters, 35, 172-174(2010).

    [61] K J Yang, D C Heinecke, C Kolbl, et al. Mode-locked Tm, Ho: YAP laser around 2.1 μm. Optics Express, 21, 1574-1580(2013).

    [62] V Aleksandrov, A Gluth, V Petrov, et al. Mode-locked Tm, Ho: KLu(WO4) 2 laser at 2060 nm using InGaSb-based SESAMs. Optics Express, 23, 4614(2015).

    [63] Y Zhao, Y Wang, X Zhang, et al. 87 fs mode-locked Tm, Ho: CaYAlO4 laser at 2043 nm. Optics Letters, 43, 915(2018).

    [64] Wang Y, Zhao Y, Pan Z, et al. 73fs SESAM modelocked Tm, Ho: CNGG laser at 2061 nm[C]Solid State Lasers XXIX: Technology Devices, 2020.

    [65] W Ling, T Xia, R Sun, et al. Low threshold, high efficiency passively mode-locked picosecond Tm, Ho: LiLuF4 laser. Frontiers in Physics, 7(2020).

    [66] Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using modelocked TmHo fiber system[C]IEEE, 2007: 1.

    [67] Q Wang, J Geng, Z Jiang, et al. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm. IEEE Photonics Technology Letters, 23, 682-684(2011).

    [68] S Kivisto, O G Okhotnikov. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber. IEEE Photonics Technology Letters, 23, 477-479(2011).

    [69] M A Solodyankin, E D Obraztsova, A S Lobach, et al. Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber. Optics Letters, 33, 1336-1338(2008).

    [70] J Liu, Y G Wang, Z S Qu, et al. Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser. Laser Physics Letters, 9, 15-19(2011).

    [71] Liu J, Wu S, Xu J, et al. Modelocked 2 μm thuliumdoped fiber laser with graphene oxide saturable absber[C]IEEE, 2012: 12.

    [72] J Ma, G Q Xie, P Lv, et al. Graphene mode-locked femtosecond laser at 2 μm wavelength. Optics Letters, 37, 2085-2087(2012).

    [73] J Ma, G Xie, J Zhang, et al. Passively mode-locked Tm: YAG ceramic laser based on graphene. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55(2014).

    [74] H Jeong, S Y Choi, M H Kim, et al. All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber. Optics Express, 24, 14152(2016).

    [75] M Jung, J Lee, J Koo, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Optics Express, 22, 7865(2014).

    [76] Tarka J, Boguslawski J, Zybala R, et al. 2 µm ultrafast fiber laser modelocked by mechanically exfoliated Sb2Te3[C]SPIE, 2016: 972820.

    [77] Z Tian, K Wu, L Kong, et al. Mode-locked thulium fiber laser with MoS2. Laser Physics Letters, 12, 65104(2015).

    [78] J Sotor, G Sobon, M Kowalczyk, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Optics Letters, 40, 3885-3888(2015).

    [79] Scht A, Parisi D, Veronesi S, et al. Passive modelocking of a Tm: YLF laser[C]Lasers & Electrooptics IEEE, 2011.

    [80] A Schmidt, P Koopmann, G Huber, et al. 175 fs Tm: Lu2O3 laser at 2.07 μm mode-locked using single-walled carbon nanotubes. Optics Express, 20, 5313-5318(2012).

    [81] A Schmidt, Y C Sun, D I Yeom, et al. Femtosecond pulses near 2 μm from a Tm: KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber. Applied Physics Express, 5, 2704(2012).

    [82] J Liu, Y G Wang, Z S Qu, et al. Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser. Laser Physics Letters, 9, 15-19(2012).

    [83] A A Lagatsky, Z Sun, T S Kulmala, et al. 2 μm solid-state laser mode-locked by single-layer graphene. Applied Physics Letters, 102, 959(2013).

    [84] Y Wang, W Chen, M Mero, et al. Sub-100 fs Tm: MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber. Optics Letters, 42, 3076-3079(2017).

    [85] Z B Pan, Y C Wang, Y G Zhao, et al. Generation of 84-fs pulses from a mode-locked Tm: CNNGG disordered garnet crystal laser. Photonics Research, 6, 800-804(2018).

    [86] Y Wang, Y Zhao, Z Pan, et al. 78 fs SWCNT-SA mode-locked Tm: CLNGG disordered garnet crystal laser at 2017 nm. Optics Letters, 43, 4268-4271(2018).

    [87] Y Zhao, W Li, Y Wang, et al. SWCNT-SA mode-locked Tm: LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 µm. Optics Letters, 45, 380035(2019).

    [88] L Li, L Zhou, T Li, et al. Passive mode-locking operation of a diode-pumped Tm: YAG laser with a MoS2 saturable absorber. Optics & Laser Technology, 124, 105986(2020).

    [89] K Kieu, F W Wise. Soliton Thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photonics Technology Letters, 21, 128-130(2009).

    [90] M Zhang, E J R Kelleher, F Torrisi, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite. Optics Express, 20, 25077-25084(2012).

    [91] Jiang J, Mohr C, Bethge J, et al. 500 MHz, 58fs highly coherent Tm fiber soliton laser[C]IEEE, 2012: 12.

    [92] Q Wang, T Chen, M Li, et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes. Applied Physics Letters, 103, 11103(2013).

    [93] G Sobon, J Sotor, I Pasternak, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber. Optics Express, 21, 12797(2013).

    [94] Q Wang, T Chen, B Zhang, et al. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Applied Physics Letters, 102, 131117(2013).

    [95] J Wang, X Liang, G Hu, et al. 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Scientific Reports, 6, 28885(2016).

    [96] J Sotor, J Bogusławski, T Martynkien, et al. All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Optics Letters, 42, 1592-1595(2017).

    [97] J Wang, Z Jiang, H Chen, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser. Optics Letters, 42, 5010-5013(2017).

    [98] J Wang, Z Jiang, H Chen, et al. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photonics Research (Washington, DC), 6, 535(2018).

    [99] Watanabe K, Zhou Y, Saitoh A, et al. Dispersion managed, high power TMdoped ultrasht pulse fiber laser at 1.9 μm using single wall carbon nanotube polyie film[C]IEEE, 2019.

    [100] R Dai, Y Meng, Y Li, et al. Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser. Optics Express, 27, 3518(2019).

    [101] M Pawliszewska, Y Ge, Z Li, et al. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Optics Express, 25, 16916(2017).

    [102] M Pawliszewska, T Martynkien, A Przewłoka, et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Optics Letters, 43, 38-41(2018).

    [103] M Pawliszewska, A Dużyńska, M Zdrojek, et al. Metallic carbon nanotube-based saturable absorbers for holmium-doped fiber lasers. Optics Express, 27, 11361(2019).

    [104] V Aleksandrov, A Gluth, V Petrov, et al. Tm, Ho: KLu(WO4)2 laser mode- locked near 2 μm by single-walled carbon nanotubes. Optics Express, 22, 26872(2014).

    [105] Z Pan, Y Wang, Y Zhao, et al. Sub-80fs mode-locked Tm, Ho-codoped disordered garnet crystal oscillator operating at 2081nm. Optics Letters, 43, 5154-5157(2018).

    [106] Y Zhao, Y Wang, W Chen, et al. 67-fs pulse generation from a mode-locked Tm, Ho: CLNGG laser at 2083 nm. Optics Express, 27, 1922(2019).

    [107] K Yin, B Zhang, L Li, et al. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photonics Research, 3, 72-75(2015).

    [108] M Jung, J Lee, J Park, et al. Mode-locked, 194-μm, all-fiberized laser using WS2-based evanescent field interaction. Optics Express, 23, 19996(2015).

    [109] H Ahmad, N A M Ariffin, S N Aidit, et al. 1.9 μm mode-locked fiber laser based on evanescent field interaction with metallic vanadium diselenide (VSe2). Optik, 230, 166280(2021).

    [110] Zhang J, Mak K F, Gröbmeyer S, et al. 270 fs, 30Wlevel Kerrlens mode locked Ho: YAG thindisk oscillat at 2 μm[C] Nonlinear Optics, 2017.

    [111] F Canbaz, I Yorulmaz, A Sennaroglu. Kerr-lens mode-locked 2.3 μm Tm3+: YLF laser as a source of femtosecond pulses in the mid-infrared. Optics Letters, 42, 3964-3967(2017).

    [112] Z Su, X Zhang, J Huang, et al. Self-mode-locking operation of a diode-end-pumped Tm: YAP laser with watt-level output power. Laser Physics, 28, 035804(2018).

    [113] A Suzuki, C Krnkel, M Tokurakawa. High quality-factor Kerr-lens mode- locked Tm: Sc2O3 single crystal laser with anomalous spectral broadening. Applied Physics Express, 13, 052007(2020).

    [114] Suzuki Anna, Kränkel Christian, Tokurakawa Masaki. Sub-6 optical-cycle Kerr-lens mode-locked Tm: Lu2O3 and Tm: Sc2O3 combined gain media laser at 2.1 μm. Optics Express, 29, 19465-19471(2021).

    [115] L E Nelson, E P Ippen, H A Haus. Broadly tunable sub‐500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Applied Physics Letters, 67, 19-21(1995).

    [116] P Li, A Ruehl, C Bransley, et al. Low noise, tunable Ho: fiber soliton oscillator for Ho: YLF amplifier seeding. Physics, 13, 065104(2016).

    [117] H Li, Z Wang, C Li, et al. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber. Optics Express, 25, 26546(2017).

    [118] H Ahmad, M H M Ahmed, M Z Samion. Generation of mode-locked noise-like pulses in double-clad Tm-doped fibre laser with nonlinear optical loop mirror. Journal of Modern Optics, 67, 146-152(2020).

    [119] F Haxsen, A Ruehl, M Engelbrecht, et al. Stretched-pulse operation of a thulium-doped fiber laser. Optics Express, 16, 20471-20476(2008).

    [120] M Engelbrecht, F Haxsen, A Ruehl, et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ. Optics Letters, 33, 690-692(2008).

    [121] Q Wang, T Chen, B Zhang, et al. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes. Optics Letters, 36, 3750-3752(2011).

    [122] F Haxsen, D Wandt, U Morgner, et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser. Optics Letters, 37, 1014-1016(2012).

    [123] A Wienke, F Haxsen, D Wandt, et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management. Optics Letters, 37, 2466-2468(2012).

    [124] X He, A Luo, Q Yang, et al. 60 nm Bandwidth, 17 nJ Noiselike pulse generation from a Thulium-doped fiber ring laser. Applied Physics Express, 6, 112702(2013).

    [125] M Gebhardt, C Gaida, F Stutzki, et al. Sub-200 fs, nJ-level stretched-pulse thulium-doped fiber oscillator at 23 MHz repetition rate. Advanced Solid State Lasers, AM5A.43(2014).

    [126] J Li, Z Yan, Z Sun, et al. Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating. Optics Express, 22, 31020(2014).

    [127] Y Nomura, T Fuji. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator. Optics Express, 22, 12461(2014).

    [128] Z Yan, X Li, Y Tang, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Optics Express, 23, 4369(2015).

    [129] Y Tang, A Chong, F W Wise. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser. Optics Letters, 40, 2361-2364(2015).

    [130] S Liu, F Yan, Y Li, et al. Noise-like pulse generation from a thulium-doped fiber laser using nonlinear polarization rotation with different net anomalous dispersion. Photonics Research, 4, 318-321(2016).

    [131] C Gao, Z Wang, H Luo, et al. High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation. Journal of Lightwave Technology, 35, 2988-2993(2017).

    [132] Vopaev V S, Donodin A I, Vos A I, et al. Highpower passively modelocked thuliumdoped allfiber ring laser with nonlinearity dispersion management[C]2018 International Conference Laser Optics (ICLO), 2018.

    [133] M Michalska, J Swiderski. Noise-like pulse generation using polarization maintaining mode-locked Thulium-doped fiber laser with nonlinear amplifying loop mirror. IEEE Photonics Journal, 11, 1-10(2019).

    [134] Liu G, Yin K, Yang L, et al. Noiselike pulse generation from a Hodoped fiber laser based on nonlinear polarization rotation[C]SPIE, 2018: 1061908.

    [135] Rudy C W, Digon M, Byer R L, et al. Thuliumdoped Germanosilicate Modelocked Fiber Lasers[C]Fiber Lasers Applications, 2012.

    [136] C W Rudy, K E Urbanek, M J F Digonnet, et al. Amplified 2-μm Thulium- doped all-fiber mode-locked figure-eight laser. Journal of Lightwave Technology, 31, 1809-1812(2013).

    [137] J Li, Z Zhang, Z Sun, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes. Optics Express, 22, 7875(2014).

    [138] Liu S, Yan F, Zhang L, et al. Noiselike femtosecond pulse in passively modelocked Tmdoped NALMbased oscillat with small anomalous dispersion[J]. Journal of Optics, 2015, 18(1): 15508.

    [139] Liu S, Yan F, Feng T, et al. Singlepolarization noiselike pulse generation from a hybrid modelocked thuliumdoped fiber laser[J]. Journal of Optics (2010), 2017, 19(4): 45505.

    [140] M Wang, J Zhao, Y Chen, et al. 10 µJ noise-like pulse generated from all fiberized Tm-doped fiber oscillator and amplifier. Optics Express, 29, 10172(2021).

    [141] J Zhao, J Zhou, Y Jiang, et al. Nonlinear absorbing-loop mirror in a Holmium-doped fiber laser. Journal of Lightwave Technology, 38, 6069-6075(2020).

    [142] C Mahnke, Y Ma, S Salman, et al. A passively mode-locked Holmium fiber oscillator based on a Nonlinear Amplifying Loop Mirror operating at 2050 nm. The European Physical Journal Conferences, 243, 04002(2020).

    [143] P Malevich, G Andriukaitis, T Flöry, et al. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Optics Letters, 38, 2746-2749(2013).

    [144] P Kroetz, A Ruehl, G Chatterjee, et al. Overcoming bifurcation instability in high-repetition-rate Ho: YLF regenerative amplifiers. Optics Letters, 40, 5427-5430(2015).

    [145] L V Grafenstein, M Bock, D Ueberschaer, et al. Picosecond 34 mJ pulses at kHz repetition rates from a Ho: YLF amplifier at 2 µm wavelength. Optics Express, 23, 33142(2015).

    [146] M Hinkelmann, D Wandt, U Morgner, et al. High repetition rate, µJ-level, CPA-free ultrashort pulse multipass amplifier based on Ho: YLF. Optics Express, 26, 18125(2018).

    [147] L V Grafenstein, M Bock, D Ueberschaer, et al. 2.05 μm chirped pulse amplification system at a 1 kHz repetition rate-2.4 ps pulses with 17 GW peak power. Optics Letters, 45, 3836-3839(2020).

    [148] A Wienke, D Wandt, U Morgner, et al. 700 MW peak power of a 380 fs regenerative amplifier with Tm: YAP. Optics Express, 23, 16884(2015).

    [149] S A Rezvani, M Suzuki, P Malevich, et al. Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm: YAP regenerative amplifier. Optics Express, 26, 29460(2018).

    [150] Dergachev A. Highenergy, kHzrate, picosecond, 2μm laser pump source f IR nonlinear optical devices[C]Proceedings of SPIE, 2013, 8599.

    [151] L V Grafenstein, M Bock, U Griebner, et al. High-energy multi-kilohertz Ho-doped regenerative amplifiers around 2 µm. Optics Express, 23, 14744(2015).

    [152] M Hemmer, D Sanchez, M Jelinek, et al. 2-μm wavelength, high-energy Ho: YLF chirped-pulse amplifier for mid-infrared OPCPA. Optics Letters, 40, 451-454(2015).

    [153] L V Grafenstein, M Bock, G Steinmeyer, et al. Taming chaos: 16 mJ picosecond Ho: YLF regenerative amplifier with 0.7 kHz repetition rate. Laser & Photonics Reviews, 10, 123-130(2016).

    [154] Hinkelmann M, Wt D, Neumann J, et al. Ultrasht pulse CPAfree Ho: YLF linear amplifier[C]Solid State Lasers XXVII: Technology Devices, 2018.

    [155] K Murari, F Zhou, Y Yin, et al. Ho: YLF amplifier with Ti: Sapphire frontend for pumping mid-infrared optical parametric amplifier. Applied Physics Letters, 117, 141102(2020).

    [156] I Astrauskas, B Považay, A Baltuška, et al. Influence of 2.09-μm pulse duration on through-silicon laser ablation of thin metal coatings. Optics & Laser Technology, 133, 106535(2021).

    Jiajia Mao, Ping Hu, Xue Zhou, Huahang Wang, Hongkun Nie, Bingzheng Yan, Ruihua Wang, Baitao Zhang, Tao Li, Kejian Yang, Jingliang He. Research development on Tm3+/ Ho3+ ions doped mid-infrared ultrafast lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210436
    Download Citation