• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026009 (2024)
Si-Ao Li1, Yuanpeng Liu1, Yiwen Zhang1, Wenqian Zhao1, Tongying Shi1, Xiao Han2, Ivan B. Djordjevic2, Changjing Bao3, Zhongqi Pan4, and Yang Yue5、*
Author Affiliations
  • 1Nankai University, Institute of Modern Optics, Tianjin, China
  • 2University of Arizona, Department of Electrical and Computer Engineering, Tucson, Arizona, United States
  • 3University of Southern California, Department of Electrical Engineering, Los Angeles, California, United States
  • 4University of Louisiana at Lafayette, Department of Electrical and Computer Engineering, Lafayette, Louisiana, United States
  • 5Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, China
  • show less
    DOI: 10.1117/1.APN.3.2.026009 Cite this Article Set citation alerts
    Si-Ao Li, Yuanpeng Liu, Yiwen Zhang, Wenqian Zhao, Tongying Shi, Xiao Han, Ivan B. Djordjevic, Changjing Bao, Zhongqi Pan, Yang Yue. Multiparameter performance monitoring of pulse amplitude modulation channels using convolutional neural networks[J]. Advanced Photonics Nexus, 2024, 3(2): 026009 Copy Citation Text show less
    References

    [1] X. Zhou, R. Urata, H. Liu. Beyond 1 Tb/s intra-data center interconnect technology: IM-DD OR coherent?. J. Lightwave Technol., 38, 475-484(2020).

    [2] E. Maniloff, S. Gareau, M. Moyer. 400G and beyond: coherent evolution to high-capacity inter data center links, M3H.4(2019).

    [3] Q. Cheng et al. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [4] S. T. Le et al. Beyond 400 Gb/s direct detection over 80 km for data center interconnect applications. J. Lightwave Technol., 38, 538-545(2020).

    [5] Z. Qu et al. Single-lambda 100G-PAM4 QSFP28 transceiver for 80-km C-band transmission. Proc. SPIE, 11038, 1130806(2020).

    [6] S.-R. Moon et al. Realization of real-time DSP for C-band PAM-4 transmission in inter-datacenter network. Opt. Express, 28, 1269-1278(2020).

    [7] N. Eiselt et al. Evaluation of real-time 8×56.25 Gb/s (400G) PAM-4 for inter-data center application over 80 km of SSMF at 1550 nm. J. Lightwave Technol., 35, 955-962(2016).

    [8] H. Mardoyan et al. 84-, 100-, and 107-GBd PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnects. J. Lightwave Technol., 35, 1253-1259(2017).

    [9] M. Chagnon. Direct-detection technologies for intra-and inter-data center optical links, W1F.4(2019).

    [10] A. Mecozzi, M. Shtaif. Information capacity of direct detection optical transmission systems. J. Lightwave Technol., 36, 689-694(2017).

    [11] Inphi Corporation.

    [12] D. Zou et al. 100G PAM-6 and PAM-8 signal transmission enabled by pre-chirping for 10-km intra-DCI utilizing MZM in C-band. J. Lightwave Technol., 38, 3445-3453(2020).

    [13] H. Xin et al. 120 GBaud PAM-4/PAM-6 generation and detection by photonic aided digital-to-analog converter and linear equalization. J. Lightwave Technol., 38, 2226-2230(2020).

    [14] J. Zhang et al. 280 Gb/s IM/DD PS-PAM-8 transmission over 10 km SSMF at O-band for optical interconnects, M4F.1(2020).

    [15] T. A. Eriksson et al. 56 Gbaud probabilistically shaped PAM8 for data center interconnects(2017).

    [16] R. A. Linke, A. H. Gnauck. High-capacity coherent lightwave systems. J. Lightwave Technol., 6, 1750-1769(1988).

    [17] D.-S. Ly-Gagnon et al. Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Lightwave Technol., 24, 12-21(2006).

    [18] M. Morsy-Osman, D. V. Plant. A comparative study of technology options for next generation intra- and inter-datacenter interconnects, W4E.1(2019).

    [19] J. Wei et al. System aspects of the next-generation data-center networks based on 200G per lambda IMDD links. Proc. SPIE, 11308, 1130805(2020).

    [20] E. El-Fiky et al. 400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects. Opt. Express, 27, 10258-10268(2019).

    [21] A. Nag, M. Tornatore, B. Mukherjee. Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol., 28, 466-475(2009).

    [22] W. Wei, C. Wang, J. Yu. Cognitive optical networks: key drivers, enabling techniques, and adaptive bandwidth services. IEEE Commun. Mag., 50, 106-113(2012).

    [23] Q. Cai et al. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing. Photonics Res., 9, B1-B8(2021).

    [24] X. Han et al. Joint probabilistic-Nyquist pulse shaping for an LDPC-coded 8-PAM signal in DWDM data center communications. Appl. Sci., 9, 4996(2019).

    [25] M. Zhu et al. Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection. Opt. Express, 26, 6629-6638(2018).

    [26] K. Wang et al. High-speed PS-PAM8 transmission in a four-lane IM/DD system using SOA at O-band for 800G DCI. IEEE Photonics Technol. Lett., 32, 293-296(2020).

    [27] Z. Qu, I. B. Djordjevic. On the probabilistic shaping and geometric shaping in optical communication systems. IEEE Access, 7, 21454-21464(2019).

    [28] L. Sun et al. Dyadic probabilistic shaping of PAM-4 and PAM-8 for cost-effective VCSEL-MMF optical interconnection. IEEE Photonics J., 11, 7202611(2019).

    [29] M. N. Sakib, O. Liboiron-Ladouceur. A study of error correction codes for PAM signals in data center applications. IEEE Photonics Technol. Lett., 25, 2274-2277(2013).

    [30] T. Yoshida, M. Karlsson, E. Agrell. Performance metrics for systems with soft-decision FEC and probabilistic shaping. IEEE Photonics Technol. Lett., 29, 2111-2114(2017).

    [31] S.-R. Moon et al. C-band PAM-4 signal transmission using soft-output MLSE and LDPC code. Opt. Express, 27, 110-120(2019).

    [32] R. Gu, Z. Yang, Y. Ji. Machine learning for intelligent optical networks: a comprehensive survey. J. Network Comput. Appl., 157, 102576(2020).

    [33] W. S. Saif et al. Machine learning techniques for optical performance monitoring and modulation format identification: a survey. IEEE Commun. Surv. Tutor., 22, 2839-2882(2020).

    [34] V. S. Ghayal, R. Jeyachitra. Advances in Electrical and Computer Technologies(2020).

    [35] S. Savian et al. Joint estimation of IQ phase and gain imbalances using convolutional neural networks on eye diagrams, STh1C.3(2018).

    [36] D. Wang et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express, 25, 17150-17166(2017).

    [37] S. Peng et al. Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Networks Learn. Syst., 30, 718-727(2018).

    [38] K. Jiang et al. A novel digital modulation recognition algorithm based on deep convolutional neural network. Appl. Sci., 10, 1166(2020).

    [39] H. Lv et al. Joint OSNR monitoring and modulation format identification on signal amplitude histograms using convolutional neural network. Opt. Fiber Technol., 61, 102455(2021).

    [40] J. Du et al. A CNN-based cost-effective modulation format identification scheme by low-bandwidth direct detecting and low rate sampling for elastic optical networks. Opt. Commun., 471, 126007(2020).

    [41] S. D. Dods, T. B. Anderson. Optical performance monitoring technique using delay tap asynchronous waveform sampling, OThP5(2006).

    [42] D. Lippiatt et al. Impairment identification for PAM-4 transceivers and links using machine learning, W7A.5(2021).

    [43] T. Tanimura et al. Convolutional neural network-based optical performance monitoring for optical transport networks. J. Opt. Commun. Networking, 11, A52-A59(2019).

    [44] D. Wang et al. Modulation format recognition and OSNR estimation using CNN-based deep learning. IEEE Photonic. Technol. Lett., 29, 1667-1670(2017).

    [45] Z. Zhao et al. A modulation format identification method based signal amplitude sorting and ratio calculation. Opt. Commun., 470, 125819(2020).

    [46] M. C. Tan et al. Simultaneous optical performance monitoring and modulation format/bit-rate identification using principal component analysis. J. Opt. Commun. Networking, 6, 441-448(2014).

    [47] X. Fan et al. Joint optical performance monitoring and modulation format/bit-rate identification by CNN-based multi-task learning. IEEE Photonics J., 10, 1-12(2018).

    [48] M. Yang et al. FPGA-based real-time soft-decision LDPC performance verification for 50G-PON, W3H.2(2019).

    [49] M. M. Rad et al. Passive optical network monitoring: challenges and requirements. IEEE Commun. Mag., 49, S45-S52(2011).

    [50] Z. Pan, C. Yu, A. E. Willner. Optical performance monitoring for the next generation optical communication networks. Opt. Fiber Technol., 16, 20-45(2010).

    [51] M. Awad, R. Khanna. Efficient Learning Machines(2015).

    [52] S. Zhang et al. Learning k for KNN classification. ACM Trans. Intell. Syst. Technol., 8, 1-19(2017).

    [53] C. H. Gladwin. Ethnographic Decision Tree Modeling(1989).

    [54] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Stat., 29, 1189-1232(2001).

    [55] M. Mateen et al. Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry, 11, 1(2019).

    [56] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [57] A. Howard et al. Searching for MobileNetV3, 1314-1324(2019).

    [58] M. Tan, Q. V. Le. EfficientNetV2: smaller models and faster training, 10096-10106(2021).

    [59] P. J. Freire et al. Performance versus complexity study of neural network equalizers in coherent optical systems. J. Lightwave Technol., 39, 6085-6096(2021).

    [60] H. Luo et al. Cost-effective multi-parameter optical performance monitoring using multi-task deep learning with adaptive ADTP and AAH. J. Lightwave Technol., 39, 1733-1741(2021).

    [61] Z. Chen et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks, 794-803(2018).

    Si-Ao Li, Yuanpeng Liu, Yiwen Zhang, Wenqian Zhao, Tongying Shi, Xiao Han, Ivan B. Djordjevic, Changjing Bao, Zhongqi Pan, Yang Yue. Multiparameter performance monitoring of pulse amplitude modulation channels using convolutional neural networks[J]. Advanced Photonics Nexus, 2024, 3(2): 026009
    Download Citation