• Laser & Optoelectronics Progress
  • Vol. 57, Issue 19, 190003 (2020)
Binglong Chen1、**, Zhongdong Yang1、*, Ming Min2, Jiqiao Liu3, Yiming Zhao4, and Fu Wang1
Author Affiliations
  • 1Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, National Satellite Meteorological Center, Beijing 100081, China
  • 2Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
  • 3Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Beijing Research Institute of Telemetry, Beijing 100076, China
  • show less
    DOI: 10.3788/LOP57.190003 Cite this Article Set citation alerts
    Binglong Chen, Zhongdong Yang, Ming Min, Jiqiao Liu, Yiming Zhao, Fu Wang. Application Requirements and Research Progress of Spaceborne Doppler Wind Lidar[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190003 Copy Citation Text show less
    References

    [1] Baidar S, Tucker S C, Beaubien M et al. The optical autocovariance wind lidar. Part II: green OAWL (GrOAWL) airborne performance and validation[J]. Journal of Atmospheric and Oceanic Technology, 35, 2099-2116(2018).

    [2] Liu Z L, Barlow J F, Chan P et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 11, 2522(2019).

    [3] Lolli S, Delaval A, Loth C et al. 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus mission[J]. Atmospheric Measurement Techniques, 6, 3349-3358(2013).

    [4] Wang Y X, Wei M, Wang Z H et al. Novel scanning strategy for future spaceborne Doppler weather radar with application to tropical cyclones[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2685-2693(2017).

    [5] McGill M J, Skinner W R, Irgang T D. Validation of wind profiles measured with incoherent Doppler lidar[J]. Applied Optics, 36, 1928-1939(1997).

    [6] Mizutani K, Itabe T, Ishii S et al. Development of coherent Doppler lidar for wind profiling[J]. Proceedings of SPIE, 5653, 138-145(2005).

    [7] Tan D G H, Andersson E, Fisher M et al. Observing-system impact assessment using a data assimilation ensemble technique: application to the ADM-Aeolus wind profiling mission[J]. Quarterly Journal of the Royal Meteorological Society, 133, 381-390(2007).

    [8] Kavaya M J, Henderson S W, Magee J R et al. Remote wind profiling with a solid-state Nd:YAG coherent lidar system[J]. Optics Letters, 14, 776-778(1989).

    [9] Weissmann M, Busen R, Drnbrack A et al. Targeted observations with an airborne wind lidar[J]. Journal of Atmospheric and Oceanic Technology, 22, 1706-1719(2005).

    [10] Žagar N, Stoffelen A, Marseille G et al. Impact assessment of simulated Doppler wind lidars with a multivariate variational assimilation in the tropics[J]. Monthly Weather Review, 136, 2443-2460(2008).

    [11] Lu N M, Min M, Dong L X et al. Development and prospect of spaceborne LiDAR for atmospheric detection[J]. Journal of Remote Sensing, 20, 1-10(2016).

    [12] Ma Z Z, Riishojgaard L P, Masutani M et al. Impact of different satellite wind lidar telescope configurations on NCEP GFS forecast skill in observing system simulation experiments[J]. Journal of Atmospheric and Oceanic Technology, 32, 478-495(2015).

    [13] Stoffelen A, Marseille G J, Bouttier F et al. ADM-aeolus Doppler wind lidar observing system simulation experiment[J]. Quarterly Journal of the Royal Meteorological Society, 132, 1927-1947(2006).

    [14] Weissmann M, Cardinali C. Impact of airborne Doppler lidar observations on ECMWF forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 133, 107-116(2007).

    [15] Pu Z X, Zhang L, Emmitt G D. Impact of airborne Doppler wind lidar profiles on numerical simulations of a tropical cyclone[J]. Geophysical Research Letters, 37, L05801(2010).

    [16] Weissmann M, Langland R H, Cardinali C et al. Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 138, 118-130(2012).

    [17] Manninen A, Marke T, Tuononen M et al. Atmospheric boundary layer classification with Doppler lidar[J]. Journal of Geophysical Research, 123, 8172-8189(2018).

    [18] Zhang J, Atlas R, Emmitt G D et al. Airborne Doppler wind lidar observations of the tropical cyclone boundary layer[J]. Remote Sensing, 10, 825(2018).

    [19] Schween J H, Hirsikko A, Lohnert U et al. Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment[J]. Atmospheric Measurement Techniques, 7, 3685-3704(2014).

    [20] Pearson G N, Davies F, Collier C G. An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer[J]. Journal of Atmospheric and Oceanic Technology, 26, 240-250(2009).

    [21] Huang M, Gao Z Q, Miao S G et al. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015[J]. Boundary-Layer Meteorology, 162, 503-522(2017).

    [22] Tucker S C, Senff C J, Weickmann A M et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 26, 673-688(2009).

    [23] Schoeberl M R, Douglass A R, Newman P A et al. QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations[J]. Journal of Geophysical Research: Atmospheres, 113, D05301(2008).

    [24] Hommel R, Timmreck C, Giorgetta M A et al. Quasi-biennial oscillation of the tropical stratospheric aerosol layer[J]. Atmospheric Chemistry and Physics, 15, 5557-5584(2014).

    [25] Ramaswamy V, Schwarzkopf M D, Shine K P. Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss[J]. Nature, 355, 810-812(1992).

    [26] Toumi R, Bekki S, Law K S. Indirect influence of ozone depletion on climate forcing by clouds[J]. Nature, 372, 348-351(1994).

    [27] Rohaly G D, Krishnamurti T N. An observing system simulation experiment for the laser atmospheric wind sounder (LAWS)[J]. Journal of Applied Meteorology, 32, 1453-1471(1993).

    [28] Chan K, Killinger D. Short-pulse coherent Doppler Nd∶YAG lidar[J]. Optical Engineering, 30, 49-54(1991).

    [29] Michael Hardesty R, Post M J, Banta R M. Observing atmospheric winds with a Doppler lidar[J]. Optics & Photonics News, 2, 12-15(1991).

    [30] Cariou J P, Valla M, Canat G. Fiber lasers: new effective sources for coherent lidars[J]. Proceedings of SPIE, 6750, 675007(2007).

    [31] Kameyama S, Ando T, Asaka K et al. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Applied Optics, 46, 1953-1962(2007).

    [32] Henderson S W. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho∶YAG lasers[J]. Applied Optics, 16, 773-775(1991).

    [33] Emmitt G D. SPARCLE: an approved shuttle mission to demonstrate tropospheric wind sensing using a coherent 2-μm Doppler lidar[J]. Proceedings of SPIE, 3439, 31-38(1998).

    [34] Phillips M W, Schnal D L, Hale C P et al. Design and development of the SPARCLE coherent lidar transceiver[J]. Proceedings of SPIE, 3707, 256-267(1999).

    [35] Emmitt G D, Miller T, Spiers G. Pointing knowledge for SPARCLE and space-based Doppler wind lidars in general. [C]∥Tenth Biennial Coherent Laser Radar Technology and Applications Conference, June 28 - July 2, 1999 , Mount Hood, Oregon, USA. Washington: NASA, 20000012996(1999).

    [36] Colver A. Study protocol: SPARCLE——a multi-centre European study of the relationship of environment to participation and quality of life in children with cerebral palsy[J]. BMC Public Health, 6, 105(2006).

    [37] Kavaya M J, Emmitt G D. Space readiness coherent lidar experiment (SPARCLE) space shuttle mission[J]. Proceedings of SPIE, 3380, 2-11(1998).

    [38] Kavaya M J, Beyon J Y, Koch G J et al. The Doppler aerosol wind (DAWN) airborne, wind-profiling coherent-detection lidar system: overview and preliminary flight results[J]. Journal of Atmospheric and Oceanic Technology, 31, 826-842(2014).

    [39] Beyon J Y, Koch G J, Kavaya M J et al. Airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler Lidar at NASA Langley Research Center[J]. Proceedings of SPIE, 8731, 87310K(2013).

    [40] Kavaya M J, Singh U N, Koch G J, Doppler wind lidar transceiver[EB/OL] et al. -01-15)[2019-11-23]. http:∥www.meteo.fr/cic/meetings/clrc/Kavaya1.pdf.(2008).

    [41] Beyon J Y, Koch G J, Kavaya M J. Development of the data acquisition and processing system for a pulsed 2-micron coherent Doppler lidar system[J]. Proceedings of SPIE, 7860, 78600A(2010).

    [42] Phillips M W, Pete Tucker J. Amplification of Q-switched pulses to 400 mJ at 2051 nm using a conduction-cooled laser pump module[J]. Proceedings of SPIE, 5653, 146-157(2005).

    [43] ItabeTandMizutaniK. Coherent Doppler wind lidar for the Japanese experimental module of the ISS[C]∥Optical Remote Sensing, February 3,2003, Quebéc City, Canada. Washington: OSA Publishing, 2003: OWA1.

    [44] Mizutani K, Itabe T, Ishii S et al. -05-15) https:∥www.researchgate.net/publication/234418980_Wind_Profiling_by_Coherent_Doppler_LIDAR_with_2MICRON_Solid_[2019-11-23]. Laser.(2004).

    [45] Phillips M W, Henderson S W, Poling M et al. Coherent lidar development for Doppler wind measurement from the International Space Station[J]. Proceedings of SPIE, 4153, 376-384(2001).

    [46] Itabe T, Mizutani K, Ishizu M et al. ISS/JEM-borne coherent Doppler lidar program to measure the wind from space[J]. Proceedings of SPIE, 4153, 412-419(2001).

    [47] Ishii S, Baron P, Aoki M et al. Feasibility study for future space-borne coherent Doppler wind lidar, part 1: instrumental overview for global wind profile observation[J]. Journal of the Meteorological Society of Japan. Ser. II, 95, 301-317(2017).

    [48] Wang J X, Dehring M, Nardell C A et al. Direct detection Doppler wind lidar: ground-based operation to space[J]. Proceedings of SPIE, 5154, 93-104(2003).

    [49] Gentry B M, McGill M J, Schwemmer G et al. -02-09)[2019-11-23]. http:∥cires1.colorado.edu/events/lidarworkshop/LWG/Feb11/ISSPapers.feb11/Gentry.feb11.pdf.(2011).

    [50] Gentry B M, Mcgill M J, Machan R et al. -07-10)[2019-11-23]. https:∥core.ac.uk/display/10554708.(2010).

    [51] Reitebuch O. The spaceborne wind lidar mission ADM-Aeolus[M]. ∥ Schumann U. Atmospheric Physics. Heidelberg: Springer, 815-827(2012).

    [52] Benjamin W, Keil C, German F, recent advances in spaceborne, airborne Wind Lidar Systems[EB/OL] et al. -06-21)[2019-11-23]. https:∥elib.dlr.de/105540/1/Full_paper_Witschas_final.pdf.(2016).

    [53] Kavaya M J, Spiers G D, Frehlich R G. Potential pitfalls related to space-based lidar remote sensing of the Earth with an emphasis on wind measurement[J]. Proceedings of SPIE, 4153, 385-393(2001).

    [54] Ansmann A, Wandinger U, Rille O L et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations[J]. Applied Optics, 46, 6606-6622(2007).

    [55] Flamant P, Cuesta J, Denneulin M L et al. ADM-Aeolus retrieval algorithms for aerosol and cloud products[J]. Tellus A, 60, 273-286(2008).

    [56] Lux O, Lemmerz C, Weiler F et al. Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus[J]. Atmospheric Measurement Techniques, 11, 3297-3322(2018).

    [57] Marksteiner U, Lemmerz C, Lux O et al. Calibrations and wind observations of an airborne direct detection wind lidar supporting ESA's Aeolus mission[J]. Remote Sensing, 10, 2056(2018).

    [58] Emmitt G D. Combining direct and coherent detection for Doppler wind lidar[J]. Proceedings of SPIE, 5575, 31-37(2004).

    [59] Emmitt G D. Hybrid technology Doppler wind lidar: assessment of simulated data products for a space-based system concept[J]. Proceedings of SPIE, 4153, 366-375(2001).

    [60] Marx C, Gentry B, Kavaya M, transceiver ACT project[EB/OL] et al. -02-03)[2019-11-23]. http:∥cires1.colorado.edu/events/lidarworkshop/LWG/Feb10/Papers.feb10/Marx.feb10.pdf.(2010).

    [61] Masutani M, Riishojgaard L P, Woollen J S et al. 8529: 8529OB(2012).

    [62] Wood S A Jr, Emmitt G D, Greco S. DLSM: a coherent and direct detection lidar simulation model for simulating space-based and aircraft-based lidar winds[J]. Proceedings of SPIE, 4035, 2-12(2000).

    [63] Gentry B M, Atlas R, Baker W et al. -12-03)[2019-11-23]. https:∥ui.adsabs.harvard.edu/abs/2008AGUFM.A21F0253G/abstract.(2008).

    [64] Kavaya M J, Frehlich R G. Parameter trade studies for coherent lidar measurements of wind from space[J]. Proceedings of SPIE, 6681, 668109(2007).

    [65] Marx C T, Gentry B, Jordan P et al. Lab demonstration of the hybrid Doppler wind lidar (HDWL) transceiver[J]. Proceedings of SPIE, 8872, 887207(2013).

    [66] Riishojgaard L P, Ma Z Z, Masutani M et al. Observation system simulation experiments for a global wind observing sounder[J]. Geophysical Research Letters, 39, 17805(2012).

    [67] Li R, Wang C, Su G Z et al. Development and applications of spaceborne lidar[J]. Science & Technology Review, 25, 58-63(2007).

    [68] Zhao Y M, Li Y H, Shang Y N et al. Application and development direction of lidar[J]. Journal of Telemetry,Tracking,and Command, 35, 4-22(2014).

    [69] Wang J Y, Shu R, Chen W B et al. Chang’e 1 spaceborne laser altimeter[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 40, 1063-1070(2010).

    [70] Zhu X P, Liu J Q, Bi D C et al. Development of all-solid coherent Doppler wind lidar[J]. Chinese Optics Letters, 10, 012801(2012). http://www.opticsjournal.net/Articles/Abstract?aid=OJ110729000211iOlRnU

    [71] Zhang X, Diao W F, Liu Y et al. Single-frequency polarized eye-safe all-fiber laser with peak power over kilowatt[J]. Applied Physics B, 115, 123-127(2014).

    [72] Sun D S, Liu D, Xia H Y et al. Low tropospheric wind profile from a 1.06 μm Doppler lidar[J]. Infrared and Laser Engineering, 36, 52-56(2007).

    [73] Tian X M, Liu D, Xu J W et al. Review on atmospheric detection lidar network and spaceborne lidar technology[J]. Journal of Atmospheric and Environmental Optics, 13, 401-416(2018).

    [74] Ba J, Hu X, Yan Z A et al. Observation analysis on the characteristics of vertical dynamical transport of sodium atoms in the mesopause region over the Langfang area[J]. Chinese Journal of Geophysics, 61, 449-457(2018).

    [75] Xia Y, Cheng X W, Li F Q et al. Laser frequency stabilization and shifting applied in narrowband sodium lidar system for wind and temperature measurement[J]. Laser & Optoelectronics Progress, 55, 102801(2018).

    [76] Fan Y, Lin Z X, Cheng X W et al. Pulsed laser spectral pattern detection based on Fabry-Perot interferometer[J]. Chinese Journal of Lasers, 45, 0804006(2018).

    [77] Zhou Y Z, Wang C, Liu Y P et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 56, 020001(2019).

    [78] Zhang Z Y, Cai Y, Yu D S et al. Two-dimensional wind field measurement based on lidar signal correlation[J]. Acta Optica Sinica, 39, 0601003(2019).

    [79] Zhang F F. Research on Doppler wind lidar system with wind detection of high temporal and spatial resolution[D]. Hefei: University of Science and Technology of China(2015).

    [80] Liu Y P, Wang C, Xia H Y. Application progress of time-frequency analysis for lidar[J]. Laser & Optoelectronics Progress, 55, 120005(2018).

    [81] Wu Y W, Guo P, Chen S Y et al. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach[J]. Applied Optics, 56, 2705-2713(2017).

    [82] Wu Y W, Guo P, Chen S Y et al. Analysis of weighted subspace fitting and subspace-based eigenvector techniques for frequency estimation for the coherent Doppler lidar[J]. Applied Optics, 56, 9268-9276(2017).

    [83] Wu Y W, Guo P, Chen S Y et al. Performance of estimated Doppler velocity by maximum likelihood based on covariance matrix[J]. Optical Engineering, 55, 096112(2016).

    [84] Lu B, Wu D, Zhang T C. Performance simulation of spaceborne coherent Doppler wind lidar based on CALIOP data[J]. Periodical of Ocean University of China, 47, 119-125(2017).

    [85] Liu Z S, Chen Z, Yu C R et al. Doppler wind lidar: from vehicle-mounted to space-borne[J]. Journal of Atmospheric and Environmental Optics, 10, 126-138(2015).

    [86] Diao W F, Zhang X, Liu J Q et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers[J]. Chinese Optics Letters, 12, 072801(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ140626000024lRoUrX

    [87] Zhong Z Q, Sun D S, Wang B X et al. Doppler wind lidar based on Fabry-Perot etalon[J]. Infrared and Laser Engineering, 35, 687-690(2006).

    [88] Yu C R, Liu Z S, Bi D C et al. Comparison of simulated performance of filters in space-borne wind lidar system[J]. Chinese Journal of Quantum Electronics, 30, 615-620(2013).

    [89] Liu L, Wu S H, Zhang H W. Wind field simulation of capital airport based on lidar data[J]. Journal of Atmospheric and Environmental Optics, 14, 259-265(2019).

    [90] Lux O, Wernham D, Bravetti P et al. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus[J]. Optics Letters, 45, 1443-1446(2020).

    [91] Zhai X C, Marksteiner U, Weiler F et al. Rayleigh wind retrieval for the ALADIN airborne demonstrator of the aeolus mission using simulated response calibration[J]. Atmospheric Measurement Techniques, 13, 445-465(2020).

    [92] Rennie M P. -05-04)[2020-05-10]. https:∥meetingorganizer.copernicus.org/EGU2020/EGU2020-5340.html.(2020).

    Binglong Chen, Zhongdong Yang, Ming Min, Jiqiao Liu, Yiming Zhao, Fu Wang. Application Requirements and Research Progress of Spaceborne Doppler Wind Lidar[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190003
    Download Citation