• Chinese Optics Letters
  • Vol. 19, Issue 6, 060013 (2021)
Yuechen Jia1、*, Yingying Ren2, Xingjuan Zhao1, and Feng Chen1、**
Author Affiliations
  • 1School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • show less
    DOI: 10.3788/COL202119.060013 Cite this Article Set citation alerts
    Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen. Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060013 Copy Citation Text show less
    References

    [1] L. Novotny, N. V. Hulst. Antennas for light. Nat. Photon., 5, 83(2011).

    [2] V. Giannini, A. I. Fern, S. C. Heck, S. A. Maier. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888(2011).

    [3] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442(2008).

    [4] S. Hao, G. Chen, C. Yang. Sensing using rare-earth-doped upconversion nano-particles. Theranostics, 3, 331(2013).

    [5] X. Cai, A. Lee, Z. Ji, C. Huang, C. H. Chang, X. Wang, Y. P. Liao, T. Xia, R. Li. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part. Fibre Toxicol., 14, 1(2017).

    [6] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photon., 1, 024002(2019).

    [7] A. Krasnok, M. Tymchenko, A. Alù. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21, 8(2018).

    [8] K. Koshelev, Y. Tang, K. Li, D.-Y. Choi, G. Li, Y. Kivshar. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photon., 6, 1639(2019).

    [9] O. Reshef, M. Saad-Bin-Alam, M. J. Huttunen, G. Carlow, B. T. Sullivan, J.-M. Ménard, K. Dolgaleva, R. W. Boyd. Multiresonant high-Q plasmonic metasurfaces. Nano Lett., 19, 6429(2019).

    [10] M. S. Bin-Alam, O. Reshef, Y. Mamchur, M. Z. Alam, G. Carlow, J. Upham, B. T. Sullivan, J.-M. Ménard, M. J. Huttunen, R. W. Boyd, K. Dolgaleva. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [11] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light: Sci. Appl., 9, 50(2020).

    [12] E. Rahimi, R. Gordon. Nonlinear plasmonic metasurfaces. Adv. Opt. Mater., 6, 1800274(2018).

    [13] G. W. Castellanos, P. Bai, J. G. Rivas. Lattice resonances in dielectric metasurfaces. J. Appl. Phys., 125, 213105(2019).

    [14] S. Murai, G. W. Castellanos, T. V. Raziman, A. G. Curto, J. G. Rivas. Enhanced light emission by magnetic and electric resonances in dielectric metasurfaces. Adv. Opt. Mater., 8, 1902024(2020).

    [15] S. Lepeshov, Y. Kivshar. Near-field coupling effects in Mie-resonant photonic structures and all-dielectric metasurfaces. ACS Photon., 5, 2888(2018).

    [16] C. Zhang, Y. Xu, J. Liu, J. Li, J. Xiang, H. Li, J. Li, Q. Dai, S. Lan, A. E. Miroshnichenko. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 9, 2964(2018).

    [17] R. Weis, T. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).

    [18] Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [19] L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Status Solidi A, 201, 253(2004).

    [20] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488(2012).

    [21] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [22] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photon. Rev., 14, 2000088(2020).

    [23] R. Wolf, Y. Jia, S. Bonaus, C. Werner, S. Herr, I. Breunig, K. Buse, H. Zappe. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872(2018).

    [24] J. Lin, F. Bo, Y. Cheng, J. Xu. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res., 8, 1910(2020).

    [25] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [26] B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, J. Xu. Lithium niobate metasurfaces. Laser Photon. Rev., 13, 1800312(2019).

    [27] L. Carletti, C. Li, J. Sautter, I. Staude, C. De Angelis, T. Li, D. N. Neshev. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express, 27, 33391(2019).

    [28] A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, F. Setzpfandt. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608(2020).

    [29] L. Kang, H. Bao, D. H. Werner. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces. Opt. Lett., 46, 633(2021).

    [30] Y. Jia, S. Wang, F. Chen. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron. Adv., 3, 190042(2020).

    [31] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review [Invited]. Chin. Opt. Lett., 17, 012302(2019).

    [32] Y. Niu, L. Yang, D. Guo, Y. Chen, X. Li, G. Zhao, X. Hu. Efficient 671 nm red light generation in annealed proton-exchanged periodically poled LiNbO3 waveguides. Chin. Opt. Lett., 18, 111902(2020).

    [33] Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, X. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [34] C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, P. Wang. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett., 15, 1382(2015).

    [35] A. Habib, X. Zhu, U. I. Can, M. L. McLanahan, P. Zorlutuna, A. A. Yanik. Electro-plasmonic nanoantenna: a nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv., 5, eaav9786(2019).

    [36] T. Wang, P. Li, D. N. Chigrin, A. J. Giles, F. J. Bezares, O. J. Glembocki, J. D. Caldwell, T. Taubner. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photon., 4, 1753(2017).

    [37] Q. Le-Van, E. Zoethout, E. J. Geluk, M. Ramezani, M. Berghuis, J. G. Rivas. Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles. Adv. Opt. Mater., 7, 1801451(2019).

    [38] S.-D. Liu, P. Yue, S. Zhang, M. Wang, H. Dai, Y. Chen, Z.-Q. Nie, Y. Cui, J.-B. Han, H. Duan. Metasurfaces composed of plasmonic molecules: hybridization between parallel and orthogonal surface lattice resonances. Adv. Opt. Mater., 8, 1901109(2020).

    [39] C. Cherqui, M. R. Bourgeois, D. Wang, G. C. Schatz. Plasmonic surface lattice resonances: theory and computation. Acc. Chem. Res., 52, 2548(2019).

    [40] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate. J. Opt. Soc. Am. B, 14, 3319(1997).

    [41] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55, 1205(1965).

    [42] J. van de Groep, A. Polman. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express, 21, 26285(2013).

    [43] K. Jiang, Y. Wang, C. Cai, H. Lin. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater., 30, 1800783(2018).

    CLP Journals

    [1] Renhong Gao, Ni Yao, Jianglin Guan, Li Deng, Jintian Lin, Min Wang, Lingling Qiao, Wei Fang, Ya Cheng. Lithium niobate microring with ultra-high Q factor above 108[J]. Chinese Optics Letters, 2022, 20(1): 011902

    Data from CrossRef

    [1] Mengchao Guo, Xiaokun Wang, Haiyan Zhuang, Dongming Tang, Baoshan Zhang, Yi Yang. 3D printed low-permittivity all-dielectric metamaterial for dual-band microwave absorption based on surface lattice resonances. Physica Scripta, 97, 075504(2022).

    Yuechen Jia, Yingying Ren, Xingjuan Zhao, Feng Chen. Surface lattice resonances in dielectric metasurfaces for enhanced light-matter interaction [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060013
    Download Citation