• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 044002 (2023)
Xitian Hu, Li Zhou, Xu Wu, and Yan Peng*
Author Affiliations
  • University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.2.4.044002 Cite this Article Set citation alerts
    Xitian Hu, Li Zhou, Xu Wu, Yan Peng. Review on near-field detection technology in the biomedical field[J]. Advanced Photonics Nexus, 2023, 2(4): 044002 Copy Citation Text show less
    References

    [1] A. M. Jurga, M. Paleczna, K. Z. Kuter. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell Neurosci., 14, 198(2020).

    [2] P. Kner et al. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).

    [3] S. E Cross et al. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol., 2, 780-783(2007).

    [4] D. J Mueller, Y. F. Dufrene. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol., 3, 261-269(2008).

    [5] E. Lipiec et al. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucl. Acids Res., 47, e108(2019).

    [6] V. Giliberti et al. Protein clustering in chemically stressed HeLa cells studied by infrared nanospectroscopy. Nanoscale, 8, 17560-17567(2016).

    [7] I. Amenabar et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun., 8, 14402(2017).

    [8] X. Zhao et al. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc. Natl. Acad. Sci. U. S. A., 119, e2200019119(2022).

    [9] G. Ramer et al. Determination of polypeptide conformation with nanoscale resolution in water. ACS Nano, 12, 6612-6619(2018).

    [10] J. Mou et al. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett., 371, 279-282(1995).

    [11] H. P. Erickson. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proc. Online, 11, 32-51(2009).

    [12] H. Yang et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc., 10, 382-396(2015).

    [13] I. Amenabar et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun., 4, 2890(2013).

    [14] T. Muller et al. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip, 14, 1315-1319(2014).

    [15] H. A. Bechtel et al. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. U. S. A., 111, 7191-7196(2014).

    [16] B. T. O’Callahan et al. Imaging nanoscale heterogeneity in ultrathin biomimetic and biological crystals. J. Phys. Chem. C, 122, 24891-24895(2018).

    [17] S. Qamar et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell, 173, 720-734.e15(2018).

    [18] A. S. Cristie-David et al. Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. J. Am. Chem. Soc., 141, 9207-9216(2019).

    [19] F. S. Ruggeri et al. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun., 11, 2945(2020).

    [20] S. Gamage et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS One, 13, e0199112(2018).

    [21] B. Ji et al. Label-free detection of biotoxins via a photo-induced force infrared spectrum at the single-molecular level. Analyst, 144, 6108-6117(2019).

    [22] J. Waeytens et al. Determination of secondary structure of proteins by nanoinfrared spectroscopy. Anal. Chem., 95, 621-627(2023).

    [23] P. Kallas et al. Protein-coated nanostructured surfaces affect the adhesion of Escherichia coli. Nanoscale, 14, 7736-7746(2022).

    [24] C. Rosu et al. Domed silica microcylinders coated with oleophilic polypeptides and their behavior in lyotropic cholesteric liquid crystals of the same polypeptide. Langmuir, 32, 13137-13148(2016).

    [25] J. C. Abrego-Martinez et al. Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy. Biosens. Bioelectron., 195, 113595(2022).

    [26] F. S. Ruggeri et al. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun., 6, 7831(2015).

    [27] J. Adamcik et al. Evolution of conformation, nanomechanics, and infrared nanospectroscopy of single amyloid fibrils converting into microcrystals. Adv. Sci., 8, 2002182(2021).

    [28] S. Banerjee et al. Nanoscale infrared spectroscopy identifies structural heterogeneity in individual amyloid fibrils and prefibrillar aggregates. J. Phys. Chem. B, 126, 5832-5841(2022).

    [29] L. Wang et al. Peak force infrared microscopy for label-free chemical imaging at sub 10 nm spatial resolution. Proc. SPIE, 11252, 112521L(2020).

    [30] S. Banerjee, A. Ghosh. Structurally distinct polymorphs of tau aggregates revealed by nanoscale infrared spectroscopy. J. Phys. Chem. Lett., 12, 11035-11041(2021).

    [31] S. Henry et al. Interaction of A beta(1-42) peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy. Nanoscale, 10, 936-940(2018).

    [32] D. S. Jakob et al. Peak force infrared-Kelvin probe force microscopy. Angew. Chem. Int. Edit., 59, 16083-16090(2020).

    [33] B. T. O’Callahan et al. Ultrasensitive tip- and antenna-enhanced infrared nanoscopy of protein complexes. J. Phys. Chem. C, 123, 17505-17509(2019).

    [34] D. Yoo et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Lett., 18, 1930-1936(2018).

    [35] J. Waeytens et al. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst, 146, 132-145(2021).

    [36] D. Khanal et al. Biospectroscopy of nanodiamond-induced alterations in conformation of intra- and extracellular proteins: a nanoscale IR study. Anal. Chem., 88, 7530-7538(2016).

    [37] J. Jiang et al. Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv. Mater., 30, 1705919(2018).

    [38] W. Liu et al. Precise protein photolithography (P-3): high performance biopatterning using silk fibroin light chain as the resist. Adv. Sci., 4, 1700191(2017).

    [39] M. Herzberg et al. Probing the secondary structure of individual a beta(40) amorphous aggregates and fibrils by AFM-IR spectroscopy. Chembiochem, 21, 3521-3524(2020).

    [40] T. Dou, L. Zhou, D. Kurouski. Unravelling the structural organization of individual alpha-synuclein oligomers grown in the presence of phospholipids. J. Phys. Chem. Lett, 12, 4407-4414(2021).

    [41] T. Dou, D. Kurouski. Phosphatidylcholine and phosphatidylserine uniquely modify the secondary structure of alpha-synuclein oligomers formed in their presence at the early stages of protein aggregation. ACS Chem. Neurosci., 13, 2380-2385(2022).

    [42] S. Rizevsky, M. Matveyenka, D. Kurouski. Nanoscale structural analysis of a lipid-driven aggregation of insulin. J. Phys. Chem. Lett., 13, 2467-2473(2022).

    [43] F. S. Ruggeri et al. Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers. Nat. Commun., 12, 688(2021).

    [44] N. Qin et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun., 7, 13079(2016).

    [45] W. Lee et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol., 15, 941-947(2020).

    [46] Z. Yang et al. Near-field nanoscopic terahertz imaging of single proteins. Small, 17, 2005814(2021).

    [47] A. Cernescu et al. Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution. Anal. Chem., 90, 10179-10186(2018).

    [48] E. Lipiec et al. High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. J. Colloid Interf. Sci., 542, 347-354(2019).

    [49] A. M. Siddiquee et al. Nanoscale probing of cholesterol-rich domains in single bilayer dimyristoyl-phosphocholine membranes using near-field spectroscopic imaging. J. Phys. Chem. Lett., 11, 9476-9484(2020).

    [50] A. Blat et al. An analysis of isolated and intact RBC membranes: a comparison of a semiquantitative approach by means of FTIR, nano-FTIR, and Raman spectroscopies. Anal. Chem., 91, 9867-9874(2019).

    [51] V. Giliberti et al. Heterogeneity of the transmembrane protein conformation in purple membranes identified by infrared nanospectroscopy. Small, 13, 1701181(2017).

    [52] V. Giliberti et al. Tip-enhanced infrared difference-nanospectroscopy of the proton pump activity of bacteriorhodopsin in single purple membrane patches. Nano Lett., 19, 3104-3114(2019).

    [53] I. Custovic et al. Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci. Rep., 12, 18972(2022).

    [54] G. C. Ajaezi et al. Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei. Analyst, 143, 5926-5934(2018).

    [55] T. Dou et al. Nanoscale structural characterization of individual viral particles using atomic force microscopy infrared spectroscopy (AFM-IR) and tip-enhanced Raman spectroscopy (TERS). Anal. Chem., 92, 11297-11304(2020).

    [56] L. Mester, A. A. Govyadinov, R. Hillenbrand. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanophotonics, 11, 377-390(2022).

    [57] C. Policar et al. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angew. Chem. Int. Edit., 50, 860-864(2011).

    [58] R. O. Freitas et al. Nano-infrared imaging of primary neurons. Cells, 10, 2559(2021).

    [59] L. S. Meszaros et al. Spectroscopic investigations under whole-cell conditions provide new insight into the metal hydride chemistry of FeFe-hydrogenase. Chem. Sci., 11, 4608-4617(2020).

    [60] K. Kanevche et al. Infrared nanoscopy and tomography of intracellular structures. Commun. Biol., 4, 1341(2021).

    [61] W. Li et al. Simultaneous nanoscale imaging of chemical and architectural heterogeneity on yeast cell wall particles. Langmuir, 36, 6169-6177(2020).

    [62] Z. Liu et al. AFM-IR probing the influence of polarization on the expression of proteins within single macrophages. J. Mater. Chem. B, 9, 2909-2917(2021).

    [63] D. Perez-Guaita et al. Multispectral atomic force microscopy-infrared nano-imaging of malaria infected red blood cells. Anal. Chem., 90, 3140-3148(2018).

    [64] D. E. Tranca et al. Nanoscale mapping of refractive index by using scattering-type scanning near-field optical microscopy. Nanomed.-Nanotechnol., 14, 47-50(2018).

    [65] S. Y. Kim et al. None of us is the same as all of us: resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz., 3, 430-438(2018).

    [66] M. Xue et al. Single-vesicle infrared nanoscopy for noninvasive tumor malignancy diagnosis. J. Am. Chem. Soc., 144, 20278-20287(2022).

    [67] S. Y. Kim et al. High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy. Nat. Protoc., 14, 576-593(2019).

    [68] A. Dazzi et al. Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Phys. Technol., 49, 113-121(2006).

    [69] A. Dazzi et al. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 108, 635-641(2008).

    [70] D. E. Otzen et al. In situ sub-cellular identification of functional amyloids in bacteria and archaea by infrared nanospectroscopy. Small Methods, 5, 2001002(2021).

    [71] H. Ping et al. Synthesis of monodisperse rod-shaped silica particles through biotemplating of surface-functionalized bacteria. Nanoscale, 12, 8732-8741(2020).

    [72] A. Deniset-Besseau et al. Monitoring TriAcylGlycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J. Phys. Chem. Lett., 5, 654-658(2014).

    [73] P. Vitry et al. Combining infrared and mode synthesizing atomic force microscopy: application to the study of lipid vesicles inside Streptomyces bacteria. Nano Res., 9, 1674-1681(2016).

    [74] C. Mayet et al. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst, 135, 2540-2545(2010).

    [75] C. Mayet et al. Analysis of bacterial polyhydroxybutyrate production by multimodal nanoimaging. Biotechnol. Adv., 31, 369-374(2013).

    [76] R. Rebois et al. Chloroform induces outstanding crystallization of poly(hydroxybutyrate) (PHB) vesicles within bacteria. Anal. Bioanal. Chem., 409, 2353-2361(2017).

    [77] G. Bakir et al. Ultrastructural and SINS analysis of the cell wall integrity response of Aspergillus nidulans to the absence of galactofuranose. Analyst, 144, 928-934(2019).

    [78] S. C. Johnson et al. Infrared nanospectroscopic imaging in the rotating frame. Optica, 6, 424-429(2019).

    [79] V. Stanic et al. The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy. Nanoscale, 10, 14245-14253(2018).

    [80] V. M. R. Zancajo et al. FTIR nanospectroscopy shows molecular structures of plant biominerals and cell walls. Anal. Chem., 92, 13694-13701(2020).

    [81] L. Bildstein et al. Discrete nanoscale distribution of hair lipids fails to provide humidity resistance. Anal. Chem., 92, 11498-11504(2020).

    [82] E. Esteve et al. Nanometric chemical speciation of abnormal deposits in kidney biopsy: infrared-nanospectroscopy reveals heterogeneities within Vancomycin casts. Anal. Chem., 92, 7388-7392(2020).

    [83] K. Kemel et al. Nanoscale investigation of human skin and study of skin penetration of Janus nanoparticles. Int. J. Pharmaceut., 579, 119193(2020).

    [84] H. Rammal et al. Mechanobiologically induced bone-like nodules: matrix characterization from micro to nanoscale. Nanomed.-Nanotechnol., 29, 102256(2020).

    [85] C. Farber et al. Nanoscale structural organization of plant epicuticular wax probed by atomic force microscope infrared spectroscopy. Anal. Chem., 91, 2472-2479(2019).

    [86] C. Paluszkiewicz et al. Differentiation of protein secondary structure in clear and opaque human lenses: AFM-IR studies. J. Pharmaceut. Biomed., 139, 125-132(2017).

    [87] C. Paluszkiewicz et al. Nanoscale infrared probing of amyloid formation within the pleomorphic adenoma tissue. BBA-Gen. Subj., 1864, 129677(2020).

    [88] L. Imbert et al. Dynamic structure and composition of bone investigated by nanoscale infrared spectroscopy. PLoS One, 13, e0202833(2018).

    [89] T. Ahn et al. Matrix/mineral ratio and domain size variation with bone tissue age: a photothermal infrared study. J. Struct. Biol., 214, 107878(2022).

    [90] G. Sereda, A. VanLaecken, J. A. Turner. Monitoring demineralization and remineralization of human dentin by characterization of its structure with resonance-enhanced AFM-IR chemical mapping, nanoindentation, and SEM. Dent. Mater., 35, 617-626(2019).

    [91] L. Huang et al. Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM. J. Adv. Res., 22, 163-171(2020).

    [92] S. G. Stanciu et al. Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy. Biomed. Opt. Express, 8, 5374-5383(2017).

    [93] D. E. Tranca et al. Surface optical characterization at nanoscale using phasor representation of data acquired by scattering scanning near-field optical microscopy. Appl. Surf. Sci., 509, 145347(2020).

    [94] K. J. Kaltenecker et al. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci. Rep., 11, 21860(2021).

    [95] O. Khatib et al. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano, 9, 7968-7975(2015).

    [96] L. M. Meireles et al. Synchrotron infrared nanospectroscopy on a graphene chip. Lab Chip, 19, 3678-3684(2019).

    [97] E. Pfitzner, J. Heberle. Infrared scattering-type scanning near-field optical microscopy of biomembranes in water. J. Phys. Chem. Lett., 11, 8183-8188(2020).

    [98] H. Wang et al. Liquid-phase peak force infrared microscopy for chemical nanoimaging and spectroscopy. Anal. Chem., 93, 3567-3575(2021).

    [99] C. Mayet et al. Sub-100 nm IR spectromicroscopy of living cells. Opt. Lett., 33, 1611-1613(2008).

    [100] T. Siday et al. Resonance-enhanced terahertz nanoscopy probes. ACS Photonics, 7, 596-601(2020).

    [101] S. Rizevsky et al. Characterization of substrates and surface-enhancement in atomic force microscopy infrared analysis of amyloid aggregates. J. Phys. Chem. C, 126, 4157-4162(2022).

    [102] S. Kenkel et al. Probe-sample interaction-independent atomic force microscopy-infrared spectroscopy: toward robust nanoscale compositional mapping. Anal. Chem., 90, 8845-8855(2018).

    [103] M. Marschall et al. Compressed FTIR spectroscopy using low-rank matrix reconstruction. Opt. Express, 28, 38762-38772(2020).

    [104] B. Kaestner et al. Compressed sensing FTIR nano-spectroscopy and nano-imaging. Opt. Express, 26, 18115-18124(2018).

    [105] A. Dorsa et al. Lock-in amplifier based peak force infrared microscopy. Analyst, 148, 227-232(2023).

    [106] Q. Xie et al. Dual-color peak force infrared microscopy. Anal. Chem., 94, 1425-1431(2022).

    Xitian Hu, Li Zhou, Xu Wu, Yan Peng. Review on near-field detection technology in the biomedical field[J]. Advanced Photonics Nexus, 2023, 2(4): 044002
    Download Citation