• Photonics Research
  • Vol. 7, Issue 7, 762 (2019)
Yafeng Xie1、2, Saifeng Zhang1、6, Yuanxin Li1, Ningning Dong1, Xiaoyan Zhang1, Lei Wang1、2, Weimin Liu3, Ivan M. Kislyakov1, Jean-Michel Nunzi1、4, Hongji Qi1, Long Zhang1, and Jun Wang1、2、5、*
Author Affiliations
  • 1Laboratory of Micro-Nano Optoelectronic Materials and Devices and CAS Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 4Department of Physics, Engineering Physics & Astronomy and Department of Chemistry, Queen’s University, Kingston, Ontario K7L-3N6, Canada
  • 5State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 6e-mail: sfzhang@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.7.000762 Cite this Article Set citation alerts
    Yafeng Xie, Saifeng Zhang, Yuanxin Li, Ningning Dong, Xiaoyan Zhang, Lei Wang, Weimin Liu, Ivan M. Kislyakov, Jean-Michel Nunzi, Hongji Qi, Long Zhang, Jun Wang. Layer-modulated two-photon absorption in MoS2: probing the shift of the excitonic dark state and band-edge[J]. Photonics Research, 2019, 7(7): 762 Copy Citation Text show less
    References

    [1] X. B. Yin, Z. L. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 344, 488-490(2014).

    [2] K. P. Wang, J. Wang, J. T. Fan. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 7, 9260-9267(2013).

    [3] H. C. Kim, H. Kim, J. U. Lee, H. B. Lee, D. H. Choi, J. H. Lee, W. H. Lee, S. H. Jhang, B. H. Park, H. Cheong, S. W. Lee, H. J. Chung. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano, 9, 6854-6860(2015).

    [4] X. L. Li, W. P. Han, J. B. Wu, X. F. Qiao, J. Zhang, P. H. Tan. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 27, 1604468(2017).

    [5] F. Zhou, W. Ji. Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection. Laser Photon. Rev., 11, 1700021(2017).

    [6] Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 513, 214-218(2014).

    [7] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett., 113, 026803(2014).

    [8] J. Xiao, Z. Ye, Y. Wang, H. Zhu, Y. Wang, X. Zhang. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light: Sci. Appl., 4, e366(2015).

    [9] H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, T. F. Heinz. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett., 15, 2992-2997(2015).

    [10] M. Rumi, J. W. Perry. Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photon., 2, 451(2010).

    [11] D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, E. W. Van Stryland. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photonics, 5, 561-565(2011).

    [12] M. Reichert, A. L. Smirl, G. Salamo, D. J. Hagan, E. W. Van Stryland. Observation of nondegenerate two-photon gain in GaAs. Phys. Rev. Lett., 117, 073602(2016).

    [13] B. Taheri, H. Liu, B. Jassemnejad, D. Appling, R. C. Powell, J. J. Song. Intensity scan and two photon absorption and nonlinear refraction of C60 in toluene. Appl. Phys. Lett., 68, 1317-1319(1996).

    [14] Y. Li, N. Dong, S. Zhang, X. Zhang, Y. Feng, K. Wang, L. Zhang, J. Wang. Giant two-photon absorption in monolayer MoS2. Laser Photon. Rev., 9, 427-434(2015).

    [15] T. Olsen, S. Latini, F. Rasmussen, K. S. Thygesen. Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett., 116, 056401(2016).

    [16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [17] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [18] M. Drüppel, T. Deilmann, P. Krüger, M. Rohlfing. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun., 8, 2117(2017).

    [19] T. Deilmann, K. S. Thygesen. Important role of screening the electron-hole exchange interaction for the optical properties of molecules near metal surfaces. Phys. Rev. B, 99, 045133(2019).

    [20] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater., 22, 1385-1390(2012).

    [21] C. G. Lee, H. G. Yan, L. E. Brus, T. F. Heinz. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano, 4, 2695-2700(2010).

    [22] R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. de Groot, A. Wold. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B, 35, 6195-6202(1987).

    [23] R. Coehoorn, C. Haas, R. A. de Groot. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B, 35, 6203-6206(1987).

    [24] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).

    [25] D. Y. Qiu, F. H. da Jornada, S. G. Louie. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett., 111, 216805(2013).

    [26] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [27] F. Zhou, W. Ji. Two-photon absorption and subband photodetection in monolayer MoS2. Opt. Lett., 42, 3113-3116(2017).

    [28] F. Zhou, J. H. Kua, S. Lu, W. Ji. Two-photon absorption arises from two-dimensional excitons. Opt. Express, 26, 16093-16101(2018).

    [29] G. S. He, Q. Zheng, A. Baev, P. N. Prasad. Saturation of multiphoton absorption upon strong and ultrafast infrared laser excitation. J. Appl. Phys., 101, 083108(2007).

    [30] A. R. Beal, H. P. Huges. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2, and 2H-MoTe2. J. Phys. C, 12, 881-890(1979).

    [31] C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, G. S. Duesberg. Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett., 104, 103114(2014).

    [32] S. F. Zhang, N. N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. X. Li, X. Y. Zhang, Z. H. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 9, 7142-7150(2015).

    [33] J. He, J. Mi, H. P. Li, W. Ji. Observation of interband two-photon absorption saturation in CdS nanocrystals. J. Phys. Chem. B, 109, 19184-19187(2005).

    [34] R. L. Sutherland. Handbook of Nonlinear Optics(2003).

    [35] N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, J. Wang. Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory. ACS Photon., 5, 1558-1565(2018).

    [36] D. A. B. Miller, A. M. Fox. Excitons in resonant coupling of quantum wells. Phys. Rev. B, 42, 1841-1844(1989).

    [37] A. M. Fox, D. A. B. Miller. Excitonic effects in coupled quantum wells. Phys. Rev. B, 44, 6231-6242(1991).

    [38] T. Cheiwchanchamnangij, W. R. L. Lambrecht. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B, 85, 205302(2012).

    [39] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 3, 887(2012).

    [40] H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 7, 490-493(2012).

    [41] K. F. Mak, K. He, J. Shan, T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 7, 494-498(2012).

    [42] G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, B. T. Jonker. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett., 101, 221907(2012).

    [43] J. H. Choi, P. Cui, H. P. Lan, Z. Y. Zhang. Linear scaling of the exciton binding energy versus the band gap of two-dimensional materials. Phys. Rev. Lett., 115, 066403(2015).

    [44] H.-P. Komsa, A. V. Krasheninnikov. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B, 86, 241201(2012).

    [45] T. Deilmann, K. S. Thygesen. Interlayer excitons with large optical amplitudes in layered van der Waals materials. Nano Lett., 18, 2984-2989(2018).

    [46] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, T. F. Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113, 076802(2014).

    [47] P. Cudazzo, C. Attaccalite, I. V. Tokatly, A. Rubio. Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane. Phys. Rev. Lett., 104, 226804(2010).

    [48] B. Zhu, X. Chen, X. Cui. Exciton binding energy of monolayer WS2. Sci. Rep., 5, 9218(2015).

    [49] T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman. Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides. Phys. Rev. B, 92, 085413(2015).

    [50] M. M. Glazov, L. E. Golub, G. Wang, X. Marie, T. Amand, B. Urbaszek. Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers. Phys. Rev. B, 95, 035311(2017).

    [51] D. Y. Qiu, F. H. da Jornada, S. G. Louie. Screening and many-body effects in two-dimensional crystals: monolayer MoS2. Phys. Rev. B, 93, 235435(2016).

    [52] G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde, T. Taniguchi, K. Watanabe, B. Urbaszek, X. Marie. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett., 119, 047401(2017).

    [53] G. D. Mahan. Theory of two-photon spectroscopy in solids. Phys. Rev., 170, 825-838(1968).

    [54] B. S. Wherrett. Scaling rules for multiphoton interband absorption in semiconductors. J. Opt. Soc. Am. B, 1, 67-72(1984).

    [55] E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, M. J. Soileau. Energy band-gap dependence of two-photon absorption-stryland. Opt. Lett., 10, 490-492(1985).

    [56] M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett., 65, 96-99(1990).

    [57] N. Dong, Y. Li, S. Zhang, N. McEvoy, X. Zhang, Y. Cui, L. Zhang, G. S. Duesberg, J. Wang. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt. Lett., 41, 3936-3939(2016).

    [58] A. Shimizu. Two-photon absorption in quantum-well structures near half the direct band gap. Phys. Rev. B, 40, 1403-1406(1989).

    [59] G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, C. C. Phillips. Laser-induced quantum coherence in a semiconductor quantum well. Phys. Rev. Lett., 84, 1019-1022(2000).

    CLP Journals

    [1] Rui-Xue Bai, Jue-Han Yang, Da-Hai Wei, Zhong-Ming Wei. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 2020, 69(18): 184211-1

    Yafeng Xie, Saifeng Zhang, Yuanxin Li, Ningning Dong, Xiaoyan Zhang, Lei Wang, Weimin Liu, Ivan M. Kislyakov, Jean-Michel Nunzi, Hongji Qi, Long Zhang, Jun Wang. Layer-modulated two-photon absorption in MoS2: probing the shift of the excitonic dark state and band-edge[J]. Photonics Research, 2019, 7(7): 762
    Download Citation