• Opto-Electronic Advances
  • Vol. 7, Issue 5, 240134 (2024)
Qian Sun1 and Minghui Hong1,2,*
Author Affiliations
  • 1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
  • 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
  • show less
    DOI: 10.29026/oea.2024.240134 Cite this Article
    Qian Sun, Minghui Hong. Special issue: Catenary optics and catenary electromagnetics[J]. Opto-Electronic Advances, 2024, 7(5): 240134 Copy Citation Text show less
    References

    [1] MB Pu, X Li, XL Ma et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv, 1, e1500396(2015).

    [2] XG Luo, MB Pu, YH Guo et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater, 8, 2001194(2020).

    [3] L Liu, P Gao, KP Liu et al. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater Horiz, 4, 290-296(2017).

    [4] X Lan, QR Deng, WT Zhang et al. Efficient chiral absorber based on twisted catenary structure. Opto-Electron Eng, 49, 220157(2022).

    [5] YJ Huang, J Luo, MB Pu et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas. Adv Sci, 6, 1801691(2019).

    [6] XD Feng, MB Pu, F Zhang et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of dual-band lasers, infrared and microwave. Adv Funct Mater, 32, 2205547(2022).

    [7] F Zhang, MB Pu, X Li et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv Mater, 33, 2008157(2021).

    [8] YL Ha, Y Luo, MB Pu et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron Adv, 6, 230133(2023).

    [9] YT Xiao, LW Chen, MB Pu et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci, 2, 230037(2023).

    [10] XH Zhang, QM Chen, DL Tang et al. Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips. Opto-Electron Adv, 7, 230126(2024).

    [11] F Zhang, QY Zeng, MB Pu et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics, 9, 2829-2837(2020).

    [12] RR Song, QL Deng, SL Zhou et al. Catenary-based phase change metasurfaces for mid-infrared switchable wavefront control. Opt Express, 29, 23006-23018(2021).

    [13] JJ Jin, X Li, YH Guo et al. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale, 11, 3952-3957(2019).

    [14] SR Chen, YL Ha, F Zhang et al. Towards the performance limit of catenary meta-optics via field-driven optimization. Opto-Electron Adv, 7, 230145(2024).

    [15] ML Brongersma, VM Shalaev. The case for plasmonics. Science, 328, 440-441(2010).

    [16] AM Berhe, K As’ham, I Al-Ani et al. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron Adv, 7, 230181(2024).

    [17] J Jang, T Badloe, Y Yang et al. Spectral modulation through the hybridization of mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 14, 15317-15326(2020).

    [18] CW Hsu, B Zhen, AD Stone et al. Bound states in the continuum. Nat Rev Mater, 1, 16048(2016).

    [19] DC Marinica, AG Borisov, SV Shabanov. Bound states in the continuum in photonics. Phys Rev Lett, 100, 183902(2008).

    [20] K Koshelev, S Lepeshov, MK Liu et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett, 121, 193903(2018).

    [21] JT Wang, P Tonkaev, K Koshelev et al. Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces. Opto-Electron Adv, 7, 230186(2024).