• Chinese Journal of Lasers
  • Vol. 51, Issue 7, 0701001 (2024)
Zijuan Wei1, Xize Gao1, Xiangyu Meng1, Zhengyan Li1、4、*, Qingbin Zhang2、4, Pengfei Lan2、**, and Peixiang Lu3、4、***
Author Affiliations
  • 1School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 4Optics Valley Laboratory, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL231490 Cite this Article Set citation alerts
    Zijuan Wei, Xize Gao, Xiangyu Meng, Zhengyan Li, Qingbin Zhang, Pengfei Lan, Peixiang Lu. High Harmonic Extreme Ultraviolet Light Source with High Repetition Rate and Power[J]. Chinese Journal of Lasers, 2024, 51(7): 0701001 Copy Citation Text show less
    References

    [1] Bertrand J B, Wörner H J, Salières P et al. Linked attosecond phase interferometry for molecular frame measurements[J]. Nature Physics, 9, 174-178(2013).

    [2] Månsson E P, Guénot D, Arnold C L et al. Double ionization probed on the attosecond timescale[J]. Nature Physics, 10, 207-211(2014).

    [3] Calegari F, Ayuso D, Trabattoni A et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 346, 336-339(2014).

    [4] Dierolf M, Menzel A, Thibault P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).

    [5] La-O-Vorakiat C, Siemens M, Murnane M M et al. Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray source[J]. Physical Review Letters, 103, 257402(2009).

    [6] Rohwer T, Hellmann S, Wiesenmayer M et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta[J]. Nature, 471, 490-493(2011).

    [7] Cingöz A, Yost D C, Allison T K et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 482, 68-71(2012).

    [8] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).

    [9] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [10] Silva F, Teichmann S M, Cousin S L et al. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window[J]. Nature Communications, 6, 6611(2015).

    [11] Gaumnitz T, Jain A, Pertot Y et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).

    [12] Li J, Ren X M, Yin Y C et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 8, 186(2017).

    [13] Eckle P, Pfeiffer A N, Cirelli C et al. Attosecond ionization and tunneling delay time measurements in helium[J]. Science, 322, 1525-1529(2008).

    [14] Schultze M, Fiess M, Karpowicz N et al. Delay in photoemission[J]. Science, 328, 1658-1662(2010).

    [15] Kandula D Z, Gohle C, Pinkert T J et al. Extreme ultraviolet frequency comb metrology[J]. Physical Review Letters, 105, 063001(2010).

    [16] Li X F, L’Huillier A, Ferray M et al. Multiple-harmonic generation in rare gases at high laser intensity[J]. Physical Review A, 39, 5751-5761(1989).

    [17] Ferray M, L’Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B Atomic Molecular Physics, 21, L31-L35(1988).

    [18] Paul P M, Toma E S, Breger P et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 292, 1689-1692(2001).

    [19] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [20] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 3, 381-387(2007).

    [21] Zürch M, Rothhardt J, Hädrich S et al. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet[J]. Scientific Reports, 4, 7356(2014).

    [22] Miao J W, Ishikawa T, Robinson I K et al. Beyond crystallography: diffractive imaging using coherent X-ray light sources[J]. Science, 348, 530-535(2015).

    [23] Boullet J, Zaouter Y, Limpert J et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Optics Letters, 34, 1489-1491(2009).

    [24] Emaury F, Diebold A, Saraceno C J et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator[J]. Optica, 2, 980(2015).

    [25] Demmler S, Rothhardt J, Hädrich S et al. Generation of high photon flux coherent soft X-ray radiation with few-cycle pulses[J]. Optics Letters, 38, 5051-5054(2013).

    [26] Klas R, Kirsche A, Gebhardt M et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source[J]. PhotoniX, 2, 4(2021).

    [27] Rothhardt J, Hädrich S, Shamir Y et al. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules[J]. Optics Express, 24, 18133-18147(2016).

    [28] Cabasse A, Machinet G, Dubrouil A et al. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate[J]. Optics Letters, 37, 4618-4620(2012).

    [29] Lorek E, Larsen E W, Heyl C M et al. High-order harmonic generation using a high-repetition-rate turnkey laser[J]. The Review of Scientific Instruments, 85, 123106(2014).

    [30] Hädrich S, Rothhardt J, Krebs M et al. Short wavelength generation at high repetition rate by direct high harmonic generation[C], MD2(2010).

    [31] Hädrich S, Rothhardt J, Krebs M et al. High harmonic generation by novel fiber amplifier based sources[J]. Optics Express, 18, 20242-20250(2010).

    [32] Hädrich S, Krebs M, Rothhardt J et al. Generation of µW level plateau harmonics at high repetition rate[J]. Optics Express, 19, 19374-19383(2011).

    [33] Kirsche A, Klas R, Gebhardt M et al. Continuously tunable high photon flux high harmonic source at 50-70 eV[C](2021).

    [34] Hädrich S, Klenke A, Rothhardt J et al. High photon flux table-top coherent extreme-ultraviolet source[J]. Nature Photonics, 8, 779-783(2014).

    [35] Klas R, Demmler S, Tschernajew M et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source[J]. Optica, 3, 1167-1170(2016).

    [36] Zhao Z G, Kobayashi Y. Realization of a mW-level 10.7-eV (λ=115.6 nm) laser by cascaded third harmonic generation of a Yb: fiber CPA laser at 1-MHz[J]. Optics Express, 25, 13517-13526(2017).

    [37] Comby A, Descamps D, Beauvarlet S et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source[J]. Optics Express, 27, 20383-20396(2019).

    [38] Bucksbaum P H, Freeman R R, Bashkansky M et al. Role of the ponderomotive potential in above-threshold ionization[J]. Journal of the Optical Society of America B, 4, 760-764(1987).

    [39] Klas R, Eschen W, Kirsche A et al. Generation of coherent broadband high photon flux continua in the XUV with a sub-two-cycle fiber laser[J]. Optics Express, 28, 6188-6196(2020).

    [40] Tschernajew M, Hädrich S, Klas R et al. High repetition rate high harmonic generation with ultra-high photon flux[C](2021).

    [41] Popmintchev D, Hernández-García C, Dollar F et al. Ultraviolet surprise: efficient soft X-ray high-harmonic generation in multiply ionized plasmas[J]. Science, 350, 1225-1231(2015).

    [42] Buss J H, Petev M, Golz T et al. High repetition rate extreme ultraviolet source driven by tunable OPCPA[C], NTu1A.6(2021).

    [43] Krebs M, Hädrich S, Demmler S et al. Towards isolated attosecond pulses at megahertz repetition rates[J]. Nature Photonics, 7, 555-559(2013).

    [44] Rothhardt J, Hädrich S, Klenke A et al. 53 W average power few-cycle fiber laser system generating soft X rays up to the water window[J]. Optics Letters, 39, 5224-5227(2014).

    [45] Popmintchev D, Galloway B R, Chen M C et al. Near- and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua[J]. Physical Review Letters, 120, 093002(2018).

    [46] Fu Y X, Nishimura K, Shao R Z et al. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy[J]. Communications Physics, 3, 92(2020).

    [47] Gebhardt M, Heuermann T, Klas R et al. Bright, high-repetition-rate water window soft X-ray source enabled by nonlinear pulse self-compression in an antiresonant hollow-core fibre[J]. Light, Science & Applications, 10, 36(2021).

    [48] Pupeikis J, Chevreuil P A, Bigler N et al. Water window soft X-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz[J]. Optica, 7, 168-171(2020).

    [49] Pupeza I, Zhang C K, Högner M et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science[J]. Nature Photonics, 15, 175-186(2021).

    [50] Vernaleken A, Weitenberg J, Sartorius T et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate[J]. Optics Letters, 36, 3428-3430(2011).

    [51] Jocher C, Eidam T, Hädrich S et al. Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power[J]. Optics Letters, 37, 4407-4409(2012).

    [52] Emaury F, Dutin C F, Saraceno C J et al. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber[J]. Optics Express, 21, 4986-4994(2013).

    [53] Mak K F, Seidel M, Pronin O et al. Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages[J]. Optics Letters, 40, 1238-1241(2015).

    [54] Hädrich S, Krebs M, Hoffmann A et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources[J]. Light: Science & Applications, 4, e320(2015).

    [55] Jin C, Wang G L, Wei H et al. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields[J]. Nature Communications, 5, 4003(2014).

    [56] Severt T, Troß J, Kolliopoulos G et al. Enhancing high-order harmonic generation by controlling the diffusion of the electron wave packet[J]. Optica, 8, 1113-1121(2021).

    [57] Wang H, Xu Y M, Ulonska S et al. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV[J]. Nature Communications, 6, 7459(2015).

    [58] Shi S X[M]. Nonlinear optics(2012).

    [59] Balcou P, Salières P, L’Huillier A et al. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces[J]. Physical Review A, 55, 3204-3210(1997).

    [60] Rundquist A, Durfee C G, Chang Z et al. Phase-matched generation of coherent soft X-rays[J]. Science, 280, 1412-1415(1998).

    [61] Kazamias S, Douillet D, Weihe F et al. Global optimization of high harmonic generation[J]. Physical Review Letters, 90, 193901(2003).

    [62] Salières P, L’Huillier A, Lewenstein M. Coherence control of high-order harmonics[J]. Physical Review Letters, 74, 3776-3779(1995).

    [63] Guo C, Harth A, Carlström S et al. Phase control of attosecond pulses in a train[J]. Journal of Physics B Atomic Molecular Physics, 51, 034006(2018).

    [64] Lewenstein M, Salières P, L’Huillier A. Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 52, 4747-4754(1995).

    [65] Yudin G L, Ivanov M Y. Nonadiabatic tunnel ionization: looking inside a laser cycle[J]. Physical Review A, 64, 013409(2001).

    [66] Popmintchev T, Chen M C, Bahabad A et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10516-10521(2009).

    [67] Popmintchev T, Chen M C, Cohen O et al. Extended phase matching of high harmonics driven by mid-infrared light[J]. Optics Letters, 33, 2128-2130(2008).

    [68] Shiner A D, Trallero-Herrero C, Kajumba N et al. Wavelength scaling of high harmonic generation efficiency[J]. Physical Review Letters, 103, 073902(2009).

    [69] Weissenbilder R, Carlström S, Rego L et al. How to optimize high-order harmonic generation in gases[J]. Nature Reviews Physics, 4, 713-722(2022).

    [70] Durfee C G, Rundquist A R, Backus S et al. Phase matching of high-order harmonics in hollow waveguides[J]. Physical Review Letters, 83, 2187-2190(1999).

    [71] Gibson E A, Paul A, Wagner N et al. Coherent soft X-ray generation in the water window with quasi-phase matching[J]. Science, 302, 95-98(2003).

    [72] Seres J, Yakovlev V S, Seres E et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources[J]. Nature Physics, 3, 878-883(2007).

    [73] Willner A, Tavella F, Yeung M et al. Coherent control of high harmonic generation via dual-gas multijet arrays[J]. Physical Review Letters, 107, 175002(2011).

    [74] Zhang X S, Lytle A L, Popmintchev T et al. Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light[J]. Nature Physics, 3, 270-275(2007).

    [75] Constant E, Garzella D, Breger P et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 82, 1668-1671(1999).

    [76] Kazamias S, Daboussi S, Guilbaud O et al. Pressure-induced phase matching in high-order harmonic generation[J]. Physical Review A, 83, 063405(2011).

    [77] Cooper J W. Photoionization from outer atomic subshells. A model study[J]. Physical Review, 128, 681-693(1962).

    [78] Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 49, 2117-2132(1994).

    [79] Lindner F, Stremme W, Schätzel M G et al. High-order harmonic generation at a repetition rate of 100 kHz[J]. Physical Review A, 68, 013814(2003).

    [80] Heyl C M, Coudert-Alteirac H, Miranda M et al. Scale-invariant nonlinear optics in gases[J]. Optica, 3, 75-81(2016).

    [81] Rothhardt J, Krebs M, Hädrich S et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime[J]. New Journal of Physics, 16, 033022(2014).

    [82] Heyl C M, Güdde J, L’Huillier A et al. High-order harmonic generation with μJ laser pulses at high repetition rates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074020(2012).

    [83] Harth A, Guo C, Cheng Y C et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA[J]. Journal of Optics, 20, 014007(2018).

    [84] Takahashi E J, Nabekawa Y, Midorikawa K. Low-divergence coherent soft X-ray source at 13 nm by high-order harmonics[J]. Applied Physics Letters, 84, 4-6(2004).

    [85] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [86] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [87] Spence J C H, Weierstall U, Howells M. Coherence and sampling requirements for diffractive imaging[J]. Ultramicroscopy, 101, 149-152(2004).

    [88] Sandberg R L, Paul A, Raymondson D A et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams[J]. Physical Review Letters, 99, 098103(2007).

    [89] Tadesse G K, Klas R, Demmler S et al. High speed and high resolution table-top nanoscale imaging[J]. Optics Letters, 41, 5170-5173(2016).

    [90] Gardner D F, Zhang B S, Seaberg M D et al. High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination[J]. Optics Express, 20, 19050-19059(2012).

    [91] Shanblatt E R, Porter C L, Gardner D F et al. Quantitative chemically-specific coherent diffractive imaging of reactions and diffusion at buried interfaces using a tabletop EUV nanoscope[C], CT4C.1(2016).

    [92] Zürch M, Foertsch S, Matzas M et al. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source[J]. Journal of Medical Imaging, 1, 031008(2014).

    [93] Ravasio A, Gauthier D, Maia F R N C et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 103, 028104(2009).

    [94] Huijts J, Fernandez S, Gauthier D et al. Broadband coherent diffractive imaging[J]. Nature Photonics, 14, 618-622(2020).

    [95] Winthrop J T, Worthington C R. X-ray microscopy by successive Fourier transformation[J]. Physics Letters, 15, 124-126(1965).

    [96] Sandberg R L, Raymondson D A, La-O-Vorakiat C et al. Tabletop soft-X-ray Fourier transform holography with 50 nm resolution[J]. Optics Letters, 34, 1618-1620(2009).

    [97] Tadesse G K, Eschen W, Klas R et al. High resolution XUV Fourier transform holography on a table top[J]. Scientific Reports, 8, 8677(2018).

    [98] Guizar-Sicairos M, Fienup J R. Holography with extended reference by autocorrelation linear differential operation[J]. Optics Express, 15, 17592-17612(2007).

    [99] Gauthier D, Guizar-Sicairos M, Ge X et al. Single-shot femtosecond X-ray holography using extended references[J]. Physical Review Letters, 105, 093901(2010).

    [100] Abbey B, Whitehead L W, Quiney H M et al. Lensless imaging using broadband X-ray sources[J]. Nature Photonics, 5, 420-424(2011).

    [101] Whitehead L W, Williams G J, Quiney H M et al. Diffractive imaging using partially coherent X rays[J]. Physical Review Letters, 103, 243902(2009).

    [102] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [103] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [104] Seaberg M D, Zhang B S, Gardner D F et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography[J]. Optica, 1, 39-44(2014).

    [105] Zhang B S, Gardner D F, Seaberg M D et al. High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography[J]. Ultramicroscopy, 158, 98-104(2015).

    [106] Baksh P D, Odstrčil M, Kim H S et al. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source[J]. Optics Letters, 41, 1317-1320(2016).

    [107] Baksh P D, Ostrčil M, Miszczak M et al. Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution[J]. Science Advances, 6, eaaz3025(2020).

    [108] Mamezaki D, Harada T, Nagata Y et al. Imaging performance improvement of coherent extreme-ultraviolet scatterometry microscope with high-harmonic-generation extreme-ultraviolet source[J]. Japanese Journal of Applied Physics, 56, 06(2017).

    [109] Nagata Y, Harada T, Watanabe T et al. At wavelength coherent scatterometry microscope using high-order harmonics for EUV mask inspection[J]. International Journal of Extreme Manufacturing, 1, 032001(2019).

    [110] Tanksalvala M, Porter C L, Esashi Y et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry[J]. Science Advances, 7, eabd9667(2021).

    [111] Mancini G F, Karl R M, Shanblatt E R et al. Colloidal crystal order and structure revealed by tabletop extreme ultraviolet scattering and coherent diffractive imaging[J]. Optics Express, 26, 11393-11406(2018).

    [112] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [113] Fuchs S, Blinne A, Rödel C et al. Optical coherence tomography using broad-bandwidth XUV and soft X-ray radiation[J]. Applied Physics B, 106, 789-795(2012).

    [114] Fuchs S, Wünsche M, Nathanael J et al. Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source[J]. Optica, 4, 903-906(2017).

    [115] Wiesner F, Wünsche M, Reinhard J et al. Material-specific imaging of nanolayers using extreme ultraviolet coherence tomography[J]. Optica, 8, 230-238(2021).

    [116] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser & Optoelectronics Progress, 58, 0300001(2021).

    [117] Dong J H, Liang Q Q, Xu L et al. Angular momentum conservation for high-harmonic generation in gases[J]. Laser & Optoelectronics Progress, 60, 1526001(2023).

    [118] Xie D, Yin Y, Zhou H Y. Theoretical investigation of high-brightness and circularly polarized high-order harmonics excited by intense laser and plasma waveguide[J]. Acta Optica Sinica, 42, 2114001(2022).

    [119] Keunecke M, Möller C, Schmitt D et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline[J]. The Review of Scientific Instruments, 91, 063905(2020).

    [120] Hütten K, Mittermair M, Stock S O et al. Ultrafast quantum control of ionization dynamics in krypton[J]. Nature Communications, 9, 719(2018).

    [121] González-Castrillo A, Martín F, Palacios A. Quantum state holography to reconstruct the molecular wave packet using an attosecond XUV-XUV pump-probe technique[J]. Scientific Reports, 10, 12981(2020).

    Zijuan Wei, Xize Gao, Xiangyu Meng, Zhengyan Li, Qingbin Zhang, Pengfei Lan, Peixiang Lu. High Harmonic Extreme Ultraviolet Light Source with High Repetition Rate and Power[J]. Chinese Journal of Lasers, 2024, 51(7): 0701001
    Download Citation