• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516012 (2021)
Bo Wang, Chi Cao, Yingbin Xing, Gui Chen, Nengli Dai, Haiqing Li, Jinggang Peng, and Jinyan Li*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/LOP202158.1516012 Cite this Article Set citation alerts
    Bo Wang, Chi Cao, Yingbin Xing, Gui Chen, Nengli Dai, Haiqing Li, Jinggang Peng, Jinyan Li. Research Status on Radiation Performance and Radiation Resistance Technology of Rare-Earth-Doped Fibers[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516012 Copy Citation Text show less
    References

    [1] Wang Y B, Chen G, Li J Y. Development and prospect of high-power doped fibers[J]. High Power Laser Science and Engineering, 6, e40(2018).

    [2] Malik A, Singh P. Free space optics: current applications and future challenges[J]. International Journal of Optics, 2015, 1-7(2015).

    [3] Skuja L. Optical properties of defects in silica[M]. Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics: science and technology, NATO science series, 2, 73-116(2000).

    [4] Leone M, Agnello S, Boscaino R et al. Optical absorption, luminescence, and ESR spectral properties of point defects in silica[M]. Nalwa H S. Silicon-based material and devices, 1-50(2001).

    [5] Girard S, Kuhnhenn J, Gusarov A et al. Radiation effects on silica-based optical fibers: recent advances and future challenges[J]. IEEE Transactions on Nuclear Science, 60, 2015-2036(2013).

    [6] Henschel H, Kohn O, Schmidt H U et al. Radiation-induced loss of rare earth doped silica fibres[J]. IEEE Transactions on Nuclear Science, 45, 1552-1557(1998).

    [7] Yao T F, Huang L J, Zhou P et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica Technologica, 50, 123-135(2020).

    [8] Wang S J, Zhang Z L, Cao C et al. Nanosecond pulse laser output with average power of 761 W and pulse energy of 17.5 mJ based on domestic fiber[J]. Chinese Journal of Lasers, 46, 1215002(2019).

    [9] Wright M W, Valley G C. Yb-doped fiber amplifier for deep-space optical communications[J]. Journal of Lightwave Technology, 23, 1369-1374(2005).

    [10] Ma J, Li M, Tan L Y et al. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment[J]. Optics Express, 17, 15571-15577(2009).

    [11] Ma J, Li M, Tan L Y et al. Space radiation effect on EDFA for inter-satellite optical communication[J]. Optik, 121, 535-538(2010).

    [12] Brocklesby W S, Lincoln J R, Mathieu A et al. Defect production in silica fibers doped with Tm3+[J]. Optics Letters, 18, 2105-2107(1993).

    [13] Barnes N P, Walsh B M, Reichle D J et al. Tm: fiber lasers for remote sensing[J]. Optical Materials, 31, 1061-1064(2009).

    [14] Deng T. Study on radiation resistance properties of silica glass and silica optical fibre[D], 4-6(2010).

    [15] Griscom D L. The natures of point defects in amorphous silicon dioxide[M]. Pacchioni G, Skuja L, Griscom D L. Defects in SiO2 and related dielectrics: science and technology, NATO science series, 2, 117-159(2000).

    [16] Devine R A B, Francou J M. Extrinsic- and intrinsic-defect creation in amorphous SiO2[J]. Physical Review B, 41, 12882-12887(1990).

    [17] Griscom D L. Optical properties and structure of defects in silica glass[J]. Journal of the Ceramic Society of Japan, 99, 923-942(1991).

    [18] Muller C, Lépine T, Allanche T et al. Extrapolated degradation of optical systems at MGy levels due to radiation-induced refractive index change[C], 1-7(2017).

    [19] Girard S, Alessi A, Richard N et al. Overview of radiation induced point defects in silica-based optical fibers[J]. Reviews in Physics, 4, 100032(2019).

    [20] Skuja L. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J]. Journal of Non-Crystalline Solids, 239, 16-48(1998).

    [21] Richard N, Martin-Samos L, Girard S et al. Oxygen deficient centers in silica: optical properties within many-body perturbation theory[J]. Journal of Physics: Condensed Matter, 25, 335502(2013).

    [22] Skuja L, Hirano M, Hosono H. Oxygen-related intrinsic defects in glassy SiO2: interstitial ozone molecules[J]. Physical Review Letters, 84, 302(2000).

    [23] Skuja L, Kajihara K, Hirano M et al. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2[J]. Physical Review B, 84, 205206(2011).

    [24] Winkler B, Martin-Samos L, Richard N et al. Correlations between structural and optical properties of peroxy bridges from first principles[J]. The Journal of Physical Chemistry C, 121, 4002-4010(2017).

    [25] Sousa C, de Graaf C, Pacchioni G. Optical properties of peroxy radicals in silica: multiconfigurational perturbation theory calculations[J]. The Journal of Chemical Physics, 114, 6259-6264(2001).

    [26] Kashaykin P F, Tomashuk A L, Salgansky M Y et al. Anomalies and peculiarities of radiation-induced light absorption in pure silica optical fibers at different temperatures[J]. Journal of Applied Physics, 121, 213104(2017).

    [27] de Michele V, Morana A, Campanella C et al. Steady-state X-ray radiation-induced attenuation in canonical optical fibers[J]. IEEE Transactions on Nuclear Science, 67, 1650-1657(2020).

    [28] Awazu K, Kawazoe H, Yamane M. Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2∶GeO2 glasses heated under an H2 atmosphere[J]. Journal of Applied Physics, 68, 2713-2718(1990).

    [29] Neustruev V B. Colour centres in germanosilicate glass and optical fibres[J]. Journal of Physics: Condensed Matter, 6, 6901-6936(1994).

    [30] Girard S, Baggio J, Bisutti J. 14-MeV neutron, γ-ray, and pulsed X-ray radiation-induced effects on multimode silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 53, 3750-3757(2006).

    [31] Skuja L, Naber A. Site-selective luminescence study of defects in gamma-irradiated glassy germanium dioxide[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 116, 549-553(1996).

    [32] di Francesca D, Girard S, Agnello S et al. Radiation response of ce-codoped germanosilicate and phosphosilicate optical fibers[J]. IEEE Transactions on Nuclear Science, 63, 2058-2064(2016).

    [33] Hideo H, Hiroshi K. Radiation-induced coloring and paramagnetic centers in synthetic SiO2∶Al glasses[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 91, 395-399(1994).

    [34] Dardaillon R, Lancry M, Myara M et al. Radiation-induced absorption and photobleaching in erbium Al-Ge-codoped optical fiber[J]. Journal of Materials Science, 55, 14326-14335(2020).

    [35] Hanafusa H, Hibino Y, Yamamoto F. Formation mechanism of drawing-induced E’ centers in silica optical fibers[J]. Journal of Applied Physics, 58, 1356-1361(1985).

    [36] Hanafusa H, Hibino Y, Yamamoto F. Drawing condition dependence of radiation-induced loss in optical fibres[J]. Electronics Letters, 22, 106-108(1986).

    [37] Yin Z, Jaluria Y. Neck down and thermally induced defects in high-speed optical fiber drawing[J]. Journal of Heat Transfer, 122, 351-362(2000).

    [38] Chen C M, Jaluria Y. Effects of doping on the optical fiber drawing process[J]. International Journal of Heat and Mass Transfer, 52, 4812-4822(2009).

    [39] Origlio G, Cannas M, Girard S et al. Influence of the drawing process on the defect generation in multistep-index germanium-doped optical fibers[J]. Optics Letters, 34, 2282-2284(2009).

    [40] Alessi A, Girard S, Marcandella C et al. X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions[J]. Journal of Non-Crystalline Solids, 357, 1966-1970(2011).

    [41] Alessi A, Girard S, Cannas M et al. Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing[J]. Optics Express, 19, 11680-11690(2011).

    [42] Alessi A, Girard S, Marcandella C et al. Raman investigation of the drawing effects on Ge-doped fibers[J]. Journal of Non-Crystalline Solids, 357, 24-27(2011).

    [43] Alessi A, Girard S, Cannas M et al. Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers[J]. Journal of Lightwave Technology, 30, 1726-1732(2012).

    [44] Girard S, Marcandella C, Alessi A et al. Transient radiation responses of optical fibers: influence of MCVD process parameters[J]. IEEE Transactions on Nuclear Science, 59, 2894-2901(2012).

    [45] Wijnands T, Aikawa K, Kuhnhenn J et al. Radiation tolerant optical fibers: from sample testing to large series production[J]. Journal of Lightwave Technology, 29, 3393-3400(2011).

    [46] Kashaykin P F, Tomashuk A L, Salgansky M Y et al. Radiation-induced attenuation in silica optical fibers fabricated in high O2 excess conditions[J]. Journal of Lightwave Technology, 33, 1788-1793(2015).

    [47] Brichard B, Borgermans P, Fernandez A F et al. Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field[J]. IEEE Transactions on Nuclear Science, 48, 2069-2073(2001).

    [48] Brichard B, Fernandez A F, Berghmans F et al. Origin of the radiation-induced OH vibration band in polymer-coated optical fibers irradiated in a nuclear fission reactor[J]. IEEE Transactions on Nuclear Science, 49, 2852-2856(2002).

    [49] Gusarov A, Chojetzki C, McKenzie I et al. Effect of the fiber coating on the radiation sensitivity of type I FBGs[J]. IEEE Photonics Technology Letters, 20, 1802-1804(2008).

    [50] Curras E, Virto A L, Moya D et al. Influence of the fiber coating type on the strain response of proton-irradiated fiber Bragg gratings[J]. IEEE Transactions on Nuclear Science, 59, 937-942(2012).

    [51] Blanchet T, Morana A, Laffont G et al. Radiation effects on type I fiber Bragg gratings: influence of recoating and irradiation conditions[J]. Journal of Lightwave Technology, 36, 998-1004(2018).

    [52] Mélin G, Guitton P, Montron R et al. Radiation resistant single-mode fiber with different coatings for sensing in high dose environments[J]. IEEE Transactions on Nuclear Science, 66, 1657-1662(2019).

    [53] Liu S, Zheng S P, Yang K et al. Radiation-induced change of OH content in Yb-doped silica glass[J]. Chinese Optics Letters, 13, 060602(2015).

    [54] Girard S, Marcandella C, Morana A et al. Combined high dose and temperature radiation effects on multimode silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 60, 4305-4313(2013).

    [55] Alessi A, di Francesca D, Girard S et al. Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers[C], 1-5(2016).

    [56] Campanella C, Morana A, Girard S et al. Combined temperature and radiation effects on radiation-sensitive single-mode optical fibers[J]. IEEE Transactions on Nuclear Science, 67, 1643-1649(2020).

    [57] Zotov K V, Likhachev M E, Tomashuk A L et al. Radiation resistant Er-doped fibers: optimization of pump wavelength[J]. IEEE Photonics Technology Letters, 20, 1476-1478(2008).

    [58] Chi J J, Jiang S Q, Zhang L et al. Experimental study on radiation performance of fiber lasers[J]. Laser & Optoelectronics Progress, 55, 061406(2018).

    [59] Sheng Y B, Yang L Y, Luan H X et al. Improvement of radiation resistance by introducing CeO2 in Yb-doped silicate glasses[J]. Journal of Nuclear Materials, 427, 58-61(2012).

    [60] Shao C Y, Xu W B, Ollier N et al. Suppression mechanism of radiation-induced darkening by Ce doping in Al/Yb/Ce-doped silica glasses: evidence from optical spectroscopy, EPR and XPS analyses[J]. Journal of Applied Physics, 120, 153101(2016).

    [61] Ladaci A, Girard S, Mescia L et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optical communications[J]. Optics Letters, 43, 3049-3052(2018).

    [62] Vivona M, Girard S, Robin T et al. Influence of Ce3+ codoping on the photoluminescence excitation channels of phosphosilicate Yb/Er-doped glasses[J]. IEEE Photonics Technology Letters, 24, 509-511(2012).

    [63] Engholm M, Jelger P, Laurell F et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 34, 1285-1287(2009).

    [64] Mady F, Guttilla A, Benabdesselam M et al. Systematic investigation of composition effects on the radiation-induced attenuation mechanisms of aluminosilicate, Yb-doped silicate, Yb- and Yb, Ce-doped aluminosilicate fiber preforms[J]. Optical Materials Express, 9, 2466-2489(2019).

    [65] Zhao N. The study on photo-darkening effect in ytterbium doped high power fiber lasers[D], 52-59(2018).

    [66] Jetschke S, Unger S, Schwuchow A et al. Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects[J]. Optics Express, 24, 13009-13022(2016).

    [67] Girard S, Ouerdane Y, Vivona M et al. Radiation effects on rare-earth doped optical fibers[J]. Proceedings of SPIE, 7817, 78170I(2010).

    [68] Girard S, Morana A, Ladaci A et al. Recent advances in radiation-hardened fiber-based technologies for space applications[J]. Journal of Optics, 20, 093001(2018).

    [69] DiGiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 113, 58-64(1989).

    [70] Deschamps T, Vezin H, Gonnet C et al. Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber[J]. Optics Express, 21, 8382-8392(2013).

    [71] Shao C Y, Ren J J, Wang F et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 122, 2809-2820(2018).

    [72] Likhachev M E, Bubnov M M, Zotov K V et al. Radiation resistance of Er-doped silica fibers: effect of host glass composition[J]. Journal of Lightwave Technology, 31, 749-755(2013).

    [73] León M, Lancry M, Ollier N et al. Ge- and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms[J]. Journal of Materials Science, 51, 10245-10261(2016).

    [74] Kobayashi Y, Sekiya E H, Saito K et al. Effects of Ge co-doping on P-related radiation-induced absorption in Er/Yb-doped optical fibers for space applications[J]. Journal of Lightwave Technology, 36, 2723-2729(2018).

    [75] Thomas J, Myara M, Troussellier L et al. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications[J]. Optics Express, 20, 2435-2444(2012).

    [76] Stone J. Interactions of hydrogen and deuterium with silica optical fibers: a review[J]. Journal of Lightwave Technology, 5, 712-733(1987).

    [77] Girard S, Vivona M, Laurent A et al. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application[J]. Optics Express, 20, 8457-8465(2012).

    [78] Girard S, Agnello S, Cannas M et al. Transient and steady-state radiation response of phosphosilicate optical fibers: influence of H2 loading[J]. IEEE Transactions on Nuclear Science, 67, 289-295(2020).

    [79] Sporea D, Sporea A, Oproiu C. Effects of hydrogen loading on optical attenuation of gamma-irradiated UV fibers[J]. Journal of Nuclear Materials, 423, 142-148(2012).

    [80] Zotov K V, Likhachev M E, Tomashuk A L et al. Radiation-resistant erbium-doped fiber for spacecraft applications[C], 1-4(2007).

    [81] Girard S, Laurent A, Pinsard E et al. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions[J]. Optics Letters, 39, 2541-2544(2014).

    [82] Xing Y B, Liu Y Z, Zhao N et al. Radical passive bleaching of Tm-doped silica fiber with deuterium[J]. Optics Letters, 43, 1075-1078(2018).

    [83] Shao C Y, Jiao Y, Lou F G et al. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform[J]. Optical Materials Express, 10, 408-420(2020).

    [84] Yoo S, Basu C, Boyland A J et al. Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation[J]. Optics Letters, 32, 1626-1628(2007).

    [85] di Francesca D, Agnello S, Girard S et al. Influence of O2-loading pretreatment on the radiation response of pure and fluorine-doped silica-based optical fibers[J]. IEEE Transactions on Nuclear Science, 61, 3302-3308(2014).

    [86] di Francesca D, Agnello S, Girard S et al. O2-loading treatment of Ge-doped silica fibers: a radiation hardening process[J]. Journal of Lightwave Technology, 34, 2311-2316(2016).

    [87] Ramsey A T, Tighe W, Bartolick J et al. Radiation effects on heated optical fibers[J]. Review of Scientific Instruments, 68, 632-635(1997).

    [88] Jasapara J, Andrejco M, DiGiovanni D et al. Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers[C], 1-2(2006).

    [89] Basu C, Yoo S, Boyland A J et al. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation[C], CJ1-2(2009).

    [90] Söderlund M J, Montiel i Ponsoda J J, Koplow J P et al. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling[J]. Optics Express, 17, 9940-9946(2009).

    [91] Li M. The study on the suppression of photodarkening in high power fiber[D], 69-73(2018).

    [92] Liu Y Z, Xing Y B, Chen G et al. Thermal bleaching of photodarkening and heat-induced loss and spectral broadening in Tm3+-doped fibers[J]. Optics Express, 28, 21845-21853(2020).

    [93] Friebele E J, Gingerich M E. Photobleaching effects in optical fiber waveguides[J]. Applied Optics, 20, 3448-3452(1981).

    [94] Manek-Hönninger I, Boullet J, Cardinal T et al. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Optics Express, 15, 1606-1611(2007).

    [95] Guzman Chávez A D, Kir'yanov A V, Barmenkov Y O et al. Reversible photo-darkening and resonant photo-bleaching of ytterbium-doped silica fiber at in-core 977-nm and 543-nm irradiation[J]. Laser Physics Letters, 4, 734-739(2007).

    [96] Gebavi H, Taccheo S, Lablonde L et al. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Optics Letters, 38, 196-198(2013).

    [97] Piccoli R, Gebavi H, Taccheo S et al. Photodarkening mitigation in Yb-doped fiber lasers by 405 nm irradiation[C], AM2A.6(2013).

    [98] Xing Y B, Huang H Q, Zhao N et al. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters, 40, 681-684(2015).

    [99] Cao R T, Lin X F, Chen Y S et al. 532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers[J]. Optics Express, 27, 26523-26531(2019).

    Bo Wang, Chi Cao, Yingbin Xing, Gui Chen, Nengli Dai, Haiqing Li, Jinggang Peng, Jinyan Li. Research Status on Radiation Performance and Radiation Resistance Technology of Rare-Earth-Doped Fibers[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516012
    Download Citation